Spaces:
Running
on
Zero
Running
on
Zero
from copy import copy, deepcopy | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from dust3r.inference import get_pred_pts3d, find_opt_scaling | |
from dust3r.utils.geometry import ( | |
inv, | |
geotrf, | |
normalize_pointcloud, | |
normalize_pointcloud_group, | |
) | |
from dust3r.utils.geometry import ( | |
get_group_pointcloud_depth, | |
get_group_pointcloud_center_scale, | |
weighted_procrustes, | |
) | |
from gsplat import rasterization | |
import numpy as np | |
import lpips | |
from dust3r.utils.camera import ( | |
pose_encoding_to_camera, | |
camera_to_pose_encoding, | |
relative_pose_absT_quatR, | |
) | |
def Sum(*losses_and_masks): | |
loss, mask = losses_and_masks[0] | |
if loss.ndim > 0: | |
# we are actually returning the loss for every pixels | |
return losses_and_masks | |
else: | |
# we are returning the global loss | |
for loss2, mask2 in losses_and_masks[1:]: | |
loss = loss + loss2 | |
return loss | |
class BaseCriterion(nn.Module): | |
def __init__(self, reduction="mean"): | |
super().__init__() | |
self.reduction = reduction | |
class LLoss(BaseCriterion): | |
"""L-norm loss""" | |
def forward(self, a, b): | |
assert ( | |
a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3 | |
), f"Bad shape = {a.shape}" | |
dist = self.distance(a, b) | |
if self.reduction == "none": | |
return dist | |
if self.reduction == "sum": | |
return dist.sum() | |
if self.reduction == "mean": | |
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) | |
raise ValueError(f"bad {self.reduction=} mode") | |
def distance(self, a, b): | |
raise NotImplementedError() | |
class L21Loss(LLoss): | |
"""Euclidean distance between 3d points""" | |
def distance(self, a, b): | |
return torch.norm(a - b, dim=-1) # normalized L2 distance | |
L21 = L21Loss() | |
class MSELoss(LLoss): | |
def distance(self, a, b): | |
return (a - b) ** 2 | |
MSE = MSELoss() | |
class Criterion(nn.Module): | |
def __init__(self, criterion=None): | |
super().__init__() | |
assert isinstance( | |
criterion, BaseCriterion | |
), f"{criterion} is not a proper criterion!" | |
self.criterion = copy(criterion) | |
def get_name(self): | |
return f"{type(self).__name__}({self.criterion})" | |
def with_reduction(self, mode="none"): | |
res = loss = deepcopy(self) | |
while loss is not None: | |
assert isinstance(loss, Criterion) | |
loss.criterion.reduction = mode # make it return the loss for each sample | |
loss = loss._loss2 # we assume loss is a Multiloss | |
return res | |
class MultiLoss(nn.Module): | |
"""Easily combinable losses (also keep track of individual loss values): | |
loss = MyLoss1() + 0.1*MyLoss2() | |
Usage: | |
Inherit from this class and override get_name() and compute_loss() | |
""" | |
def __init__(self): | |
super().__init__() | |
self._alpha = 1 | |
self._loss2 = None | |
def compute_loss(self, *args, **kwargs): | |
raise NotImplementedError() | |
def get_name(self): | |
raise NotImplementedError() | |
def __mul__(self, alpha): | |
assert isinstance(alpha, (int, float)) | |
res = copy(self) | |
res._alpha = alpha | |
return res | |
__rmul__ = __mul__ # same | |
def __add__(self, loss2): | |
assert isinstance(loss2, MultiLoss) | |
res = cur = copy(self) | |
# find the end of the chain | |
while cur._loss2 is not None: | |
cur = cur._loss2 | |
cur._loss2 = loss2 | |
return res | |
def __repr__(self): | |
name = self.get_name() | |
if self._alpha != 1: | |
name = f"{self._alpha:g}*{name}" | |
if self._loss2: | |
name = f"{name} + {self._loss2}" | |
return name | |
def forward(self, *args, **kwargs): | |
loss = self.compute_loss(*args, **kwargs) | |
if isinstance(loss, tuple): | |
loss, details = loss | |
elif loss.ndim == 0: | |
details = {self.get_name(): float(loss)} | |
else: | |
details = {} | |
loss = loss * self._alpha | |
if self._loss2: | |
loss2, details2 = self._loss2(*args, **kwargs) | |
loss = loss + loss2 | |
details |= details2 | |
return loss, details | |
class SSIM(nn.Module): | |
"""Layer to compute the SSIM loss between a pair of images""" | |
def __init__(self): | |
super(SSIM, self).__init__() | |
self.mu_x_pool = nn.AvgPool2d(3, 1) | |
self.mu_y_pool = nn.AvgPool2d(3, 1) | |
self.sig_x_pool = nn.AvgPool2d(3, 1) | |
self.sig_y_pool = nn.AvgPool2d(3, 1) | |
self.sig_xy_pool = nn.AvgPool2d(3, 1) | |
self.refl = nn.ReflectionPad2d(1) | |
self.C1 = 0.01**2 | |
self.C2 = 0.03**2 | |
def forward(self, x, y): | |
x = self.refl(x) | |
y = self.refl(y) | |
mu_x = self.mu_x_pool(x) | |
mu_y = self.mu_y_pool(y) | |
sigma_x = self.sig_x_pool(x**2) - mu_x**2 | |
sigma_y = self.sig_y_pool(y**2) - mu_y**2 | |
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y | |
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2) | |
SSIM_d = (mu_x**2 + mu_y**2 + self.C1) * (sigma_x + sigma_y + self.C2) | |
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1) | |
class RGBLoss(Criterion, MultiLoss): | |
def __init__(self, criterion): | |
super().__init__(criterion) | |
self.ssim = SSIM() | |
def img_loss(self, a, b): | |
return self.criterion(a, b) | |
def compute_loss(self, gts, preds, **kw): | |
gt_rgbs = [gt["img"].permute(0, 2, 3, 1) for gt in gts] | |
pred_rgbs = [pred["rgb"] for pred in preds] | |
ls = [ | |
self.img_loss(pred_rgb, gt_rgb) | |
for pred_rgb, gt_rgb in zip(pred_rgbs, gt_rgbs) | |
] | |
details = {} | |
self_name = type(self).__name__ | |
for i, l in enumerate(ls): | |
details[self_name + f"_rgb/{i+1}"] = float(l) | |
details[f"pred_rgb_{i+1}"] = pred_rgbs[i] | |
rgb_loss = sum(ls) / len(ls) | |
return rgb_loss, details | |
class DepthScaleShiftInvLoss(BaseCriterion): | |
"""scale and shift invariant loss""" | |
def __init__(self, reduction="none"): | |
super().__init__(reduction) | |
def forward(self, pred, gt, mask): | |
assert pred.shape == gt.shape and pred.ndim == 3, f"Bad shape = {pred.shape}" | |
dist = self.distance(pred, gt, mask) | |
# assert dist.ndim == a.ndim - 1 # one dimension less | |
if self.reduction == "none": | |
return dist | |
if self.reduction == "sum": | |
return dist.sum() | |
if self.reduction == "mean": | |
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) | |
raise ValueError(f"bad {self.reduction=} mode") | |
def normalize(self, x, mask): | |
x_valid = x[mask] | |
splits = mask.sum(dim=(1, 2)).tolist() | |
x_valid_list = torch.split(x_valid, splits) | |
shift = [x.mean() for x in x_valid_list] | |
x_valid_centered = [x - m for x, m in zip(x_valid_list, shift)] | |
scale = [x.abs().mean() for x in x_valid_centered] | |
scale = torch.stack(scale) | |
shift = torch.stack(shift) | |
x = (x - shift.view(-1, 1, 1)) / scale.view(-1, 1, 1).clamp(min=1e-6) | |
return x | |
def distance(self, pred, gt, mask): | |
pred = self.normalize(pred, mask) | |
gt = self.normalize(gt, mask) | |
return torch.abs((pred - gt)[mask]) | |
class ScaleInvLoss(BaseCriterion): | |
"""scale invariant loss""" | |
def __init__(self, reduction="none"): | |
super().__init__(reduction) | |
def forward(self, pred, gt, mask): | |
assert pred.shape == gt.shape and pred.ndim == 4, f"Bad shape = {pred.shape}" | |
dist = self.distance(pred, gt, mask) | |
# assert dist.ndim == a.ndim - 1 # one dimension less | |
if self.reduction == "none": | |
return dist | |
if self.reduction == "sum": | |
return dist.sum() | |
if self.reduction == "mean": | |
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) | |
raise ValueError(f"bad {self.reduction=} mode") | |
def distance(self, pred, gt, mask): | |
pred_norm_factor = (torch.norm(pred, dim=-1) * mask).sum(dim=(1, 2)) / mask.sum( | |
dim=(1, 2) | |
).clamp(min=1e-6) | |
gt_norm_factor = (torch.norm(gt, dim=-1) * mask).sum(dim=(1, 2)) / mask.sum( | |
dim=(1, 2) | |
).clamp(min=1e-6) | |
pred = pred / pred_norm_factor.view(-1, 1, 1, 1).clamp(min=1e-6) | |
gt = gt / gt_norm_factor.view(-1, 1, 1, 1).clamp(min=1e-6) | |
return torch.norm(pred - gt, dim=-1)[mask] | |
class Regr3DPose(Criterion, MultiLoss): | |
"""Ensure that all 3D points are correct. | |
Asymmetric loss: view1 is supposed to be the anchor. | |
P1 = RT1 @ D1 | |
P2 = RT2 @ D2 | |
loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1) | |
loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2) | |
= (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2) | |
""" | |
def __init__( | |
self, | |
criterion, | |
norm_mode="?avg_dis", | |
gt_scale=False, | |
sky_loss_value=2, | |
max_metric_scale=False, | |
): | |
super().__init__(criterion) | |
if norm_mode.startswith("?"): | |
# do no norm pts from metric scale datasets | |
self.norm_all = False | |
self.norm_mode = norm_mode[1:] | |
else: | |
self.norm_all = True | |
self.norm_mode = norm_mode | |
self.gt_scale = gt_scale | |
self.sky_loss_value = sky_loss_value | |
self.max_metric_scale = max_metric_scale | |
def get_norm_factor_point_cloud( | |
self, pts_cross, valids, conf_cross, norm_self_only=False | |
): | |
pts = [x for x in pts_cross] | |
valids = [x for x in valids] | |
confs = [x for x in conf_cross] | |
norm_factor = normalize_pointcloud_group( | |
pts, self.norm_mode, valids, confs, ret_factor_only=True | |
) | |
return norm_factor | |
def get_norm_factor_poses(self, gt_trans, pr_trans, not_metric_mask): | |
if self.norm_mode and not self.gt_scale: | |
gt_trans = [x[:, None, None, :].clone() for x in gt_trans] | |
valids = [torch.ones_like(x[..., 0], dtype=torch.bool) for x in gt_trans] | |
norm_factor_gt = ( | |
normalize_pointcloud_group( | |
gt_trans, | |
self.norm_mode, | |
valids, | |
ret_factor_only=True, | |
) | |
.squeeze(-1) | |
.squeeze(-1) | |
) | |
else: | |
norm_factor_gt = torch.ones( | |
len(gt_trans), dtype=gt_trans[0].dtype, device=gt_trans[0].device | |
) | |
norm_factor_pr = norm_factor_gt.clone() | |
if self.norm_mode and not_metric_mask.sum() > 0 and not self.gt_scale: | |
pr_trans_not_metric = [ | |
x[not_metric_mask][:, None, None, :].clone() for x in pr_trans | |
] | |
valids = [ | |
torch.ones_like(x[..., 0], dtype=torch.bool) | |
for x in pr_trans_not_metric | |
] | |
norm_factor_pr_not_metric = ( | |
normalize_pointcloud_group( | |
pr_trans_not_metric, | |
self.norm_mode, | |
valids, | |
ret_factor_only=True, | |
) | |
.squeeze(-1) | |
.squeeze(-1) | |
) | |
norm_factor_pr[not_metric_mask] = norm_factor_pr_not_metric | |
return norm_factor_gt, norm_factor_pr | |
def get_all_pts3d( | |
self, | |
gts, | |
preds, | |
dist_clip=None, | |
norm_self_only=False, | |
norm_pose_separately=False, | |
eps=1e-3, | |
camera1=None, | |
): | |
# everything is normalized w.r.t. camera of view1 | |
in_camera1 = inv(gts[0]["camera_pose"]) if camera1 is None else inv(camera1) | |
gt_pts_cross = [geotrf(in_camera1, gt["pts3d"]) for gt in gts] | |
valids = [gt["valid_mask"].clone() for gt in gts] | |
camera_only = gts[0]["camera_only"] | |
if dist_clip is not None: | |
# points that are too far-away == invalid | |
dis = [gt_pt.norm(dim=-1) for gt_pt in gt_pts_cross] | |
valids = [valid & (dis <= dist_clip) for valid, dis in zip(valids, dis)] | |
pr_pts_cross = [pred["pts3d_in_other_view"] for pred in preds] | |
conf_cross = [torch.log(pred["conf"]).detach().clip(eps) for pred in preds] | |
# valids = torch.stack(valids, dim=0) # S B H W | |
# valids = valids.permute(1, 0, 2, 3) # B S H W | |
# valids_masks = preprocess_mask(valids, mode="pad") # (B, S, H, W) | |
# | |
# valids = torch.unbind(valids_masks, dim=1) # [S] (B, H, W) | |
if not self.norm_all: | |
if self.max_metric_scale: | |
B = valids[0].shape[0] | |
dist = [ | |
torch.where(valid, torch.linalg.norm(gt_pt_cross, dim=-1), 0).view( | |
B, -1 | |
) | |
for valid, gt_pt_cross in zip(valids, gt_pts_cross) | |
] | |
for d in dist: | |
gts[0]["is_metric"] = gts[0]["is_metric_scale"] & ( | |
d.max(dim=-1).values < self.max_metric_scale | |
) | |
not_metric_mask = ~gts[0]["is_metric"] | |
else: | |
not_metric_mask = torch.ones_like(gts[0]["is_metric"]) | |
# normalize 3d points | |
# compute the scale using only the self view point maps | |
if self.norm_mode and not self.gt_scale: | |
norm_factor_gt = self.get_norm_factor_point_cloud( | |
gt_pts_cross, | |
valids, | |
conf_cross, | |
norm_self_only=norm_self_only, | |
) | |
else: | |
norm_factor_gt = torch.ones_like( | |
preds[0]["pts3d_in_other_view"][:, :1, :1, :1] | |
) | |
norm_factor_pr = norm_factor_gt.clone() | |
if self.norm_mode and not_metric_mask.sum() > 0 and not self.gt_scale: | |
norm_factor_pr_not_metric = self.get_norm_factor_point_cloud( | |
[pr_pt_cross[not_metric_mask] for pr_pt_cross in pr_pts_cross], | |
[valid[not_metric_mask] for valid in valids], | |
[conf[not_metric_mask] for conf in conf_cross], | |
norm_self_only=norm_self_only, | |
) | |
norm_factor_pr[not_metric_mask] = norm_factor_pr_not_metric | |
norm_factor_gt = norm_factor_gt.clip(eps) | |
norm_factor_pr = norm_factor_pr.clip(eps) | |
gt_pts_cross = [pts / norm_factor_gt for pts in gt_pts_cross] | |
pr_pts_cross = [pts / norm_factor_pr for pts in pr_pts_cross] | |
# [(Bx3, BX4), (BX3, BX4), ...], 3 for translation, 4 for quaternion | |
gt_poses = [ | |
camera_to_pose_encoding(in_camera1 @ gt["camera_pose"]).clone() | |
for gt in gts | |
] | |
pr_poses = [pred["camera_pose"].clone() for pred in preds] | |
pose_norm_factor_gt = norm_factor_gt.clone().squeeze(2, 3) | |
pose_norm_factor_pr = norm_factor_pr.clone().squeeze(2, 3) | |
if norm_pose_separately: | |
gt_trans = [gt[:, :3] for gt in gt_poses] | |
pr_trans = [pr[:, :3] for pr in pr_poses] | |
pose_norm_factor_gt, pose_norm_factor_pr = self.get_norm_factor_poses( | |
gt_trans, pr_trans, not_metric_mask | |
) | |
elif any(camera_only): | |
gt_trans = [gt[:, :3] for gt in gt_poses] | |
pr_trans = [pr[:, :3] for pr in pr_poses] | |
pose_only_norm_factor_gt, pose_only_norm_factor_pr = ( | |
self.get_norm_factor_poses(gt_trans, pr_trans, not_metric_mask) | |
) | |
pose_norm_factor_gt = torch.where( | |
camera_only[:, None], pose_only_norm_factor_gt, pose_norm_factor_gt | |
) | |
pose_norm_factor_pr = torch.where( | |
camera_only[:, None], pose_only_norm_factor_pr, pose_norm_factor_pr | |
) | |
gt_poses = [ | |
(gt[:, :3] / pose_norm_factor_gt.clip(eps), gt[:, 3:]) for gt in gt_poses | |
] | |
pr_poses = [ | |
(pr[:, :3] / pose_norm_factor_pr.clip(eps), pr[:, 3:]) for pr in pr_poses | |
] | |
pose_masks = (pose_norm_factor_gt.squeeze(-1) > eps) & ( | |
pose_norm_factor_pr.squeeze(-1) > eps | |
) | |
skys = [gt["sky_mask"] & ~valid for gt, valid in zip(gts, valids)] | |
return ( | |
gt_pts_cross, | |
pr_pts_cross, | |
gt_poses, | |
pr_poses, | |
valids, | |
skys, | |
pose_masks, | |
{}, | |
) | |
def get_all_pts3d_with_scale_loss( | |
self, | |
gts, | |
preds, | |
dist_clip=None, | |
norm_self_only=False, | |
norm_pose_separately=False, | |
eps=1e-3, | |
): | |
# everything is normalized w.r.t. camera of view1 | |
in_camera1 = inv(gts[0]["camera_pose"]) | |
gt_pts_self = [geotrf(inv(gt["camera_pose"]), gt["pts3d"]) for gt in gts] | |
gt_pts_cross = [geotrf(in_camera1, gt["pts3d"]) for gt in gts] | |
valids = [gt["valid_mask"].clone() for gt in gts] | |
camera_only = gts[0]["camera_only"] | |
if dist_clip is not None: | |
# points that are too far-away == invalid | |
dis = [gt_pt.norm(dim=-1) for gt_pt in gt_pts_cross] | |
valids = [valid & (dis <= dist_clip) for valid, dis in zip(valids, dis)] | |
pr_pts_self = [pred["pts3d_in_self_view"] for pred in preds] | |
pr_pts_cross = [pred["pts3d_in_other_view"] for pred in preds] | |
conf_self = [torch.log(pred["conf_self"]).detach().clip(eps) for pred in preds] | |
conf_cross = [torch.log(pred["conf"]).detach().clip(eps) for pred in preds] | |
if not self.norm_all: | |
if self.max_metric_scale: | |
B = valids[0].shape[0] | |
dist = [ | |
torch.where(valid, torch.linalg.norm(gt_pt_cross, dim=-1), 0).view( | |
B, -1 | |
) | |
for valid, gt_pt_cross in zip(valids, gt_pts_cross) | |
] | |
for d in dist: | |
gts[0]["is_metric"] = gts[0]["is_metric_scale"] & ( | |
d.max(dim=-1).values < self.max_metric_scale | |
) | |
not_metric_mask = ~gts[0]["is_metric"] | |
else: | |
not_metric_mask = torch.ones_like(gts[0]["is_metric"]) | |
# normalize 3d points | |
# compute the scale using only the self view point maps | |
if self.norm_mode and not self.gt_scale: | |
norm_factor_gt = self.get_norm_factor_point_cloud( | |
gt_pts_self[:1], | |
gt_pts_cross[:1], | |
valids[:1], | |
conf_self[:1], | |
conf_cross[:1], | |
norm_self_only=norm_self_only, | |
) | |
else: | |
norm_factor_gt = torch.ones_like( | |
preds[0]["pts3d_in_other_view"][:, :1, :1, :1] | |
) | |
if self.norm_mode: | |
norm_factor_pr = self.get_norm_factor_point_cloud( | |
pr_pts_self[:1], | |
pr_pts_cross[:1], | |
valids[:1], | |
conf_self[:1], | |
conf_cross[:1], | |
norm_self_only=norm_self_only, | |
) | |
else: | |
raise NotImplementedError | |
# only add loss to metric scale norm factor | |
if (~not_metric_mask).sum() > 0: | |
pts_scale_loss = torch.abs( | |
norm_factor_pr[~not_metric_mask] - norm_factor_gt[~not_metric_mask] | |
).mean() | |
else: | |
pts_scale_loss = 0.0 | |
norm_factor_gt = norm_factor_gt.clip(eps) | |
norm_factor_pr = norm_factor_pr.clip(eps) | |
gt_pts_self = [pts / norm_factor_gt for pts in gt_pts_self] | |
gt_pts_cross = [pts / norm_factor_gt for pts in gt_pts_cross] | |
pr_pts_self = [pts / norm_factor_pr for pts in pr_pts_self] | |
pr_pts_cross = [pts / norm_factor_pr for pts in pr_pts_cross] | |
# [(Bx3, BX4), (BX3, BX4), ...], 3 for translation, 4 for quaternion | |
gt_poses = [ | |
camera_to_pose_encoding(in_camera1 @ gt["camera_pose"]).clone() | |
for gt in gts | |
] | |
pr_poses = [pred["camera_pose"].clone() for pred in preds] | |
pose_norm_factor_gt = norm_factor_gt.clone().squeeze(2, 3) | |
pose_norm_factor_pr = norm_factor_pr.clone().squeeze(2, 3) | |
if norm_pose_separately: | |
gt_trans = [gt[:, :3] for gt in gt_poses][:1] | |
pr_trans = [pr[:, :3] for pr in pr_poses][:1] | |
pose_norm_factor_gt, pose_norm_factor_pr = self.get_norm_factor_poses( | |
gt_trans, pr_trans, torch.ones_like(not_metric_mask) | |
) | |
elif any(camera_only): | |
gt_trans = [gt[:, :3] for gt in gt_poses][:1] | |
pr_trans = [pr[:, :3] for pr in pr_poses][:1] | |
pose_only_norm_factor_gt, pose_only_norm_factor_pr = ( | |
self.get_norm_factor_poses( | |
gt_trans, pr_trans, torch.ones_like(not_metric_mask) | |
) | |
) | |
pose_norm_factor_gt = torch.where( | |
camera_only[:, None], pose_only_norm_factor_gt, pose_norm_factor_gt | |
) | |
pose_norm_factor_pr = torch.where( | |
camera_only[:, None], pose_only_norm_factor_pr, pose_norm_factor_pr | |
) | |
# only add loss to metric scale norm factor | |
if (~not_metric_mask).sum() > 0: | |
pose_scale_loss = torch.abs( | |
pose_norm_factor_pr[~not_metric_mask] | |
- pose_norm_factor_gt[~not_metric_mask] | |
).mean() | |
else: | |
pose_scale_loss = 0.0 | |
gt_poses = [ | |
(gt[:, :3] / pose_norm_factor_gt.clip(eps), gt[:, 3:]) for gt in gt_poses | |
] | |
pr_poses = [ | |
(pr[:, :3] / pose_norm_factor_pr.clip(eps), pr[:, 3:]) for pr in pr_poses | |
] | |
pose_masks = (pose_norm_factor_gt.squeeze() > eps) & ( | |
pose_norm_factor_pr.squeeze() > eps | |
) | |
if any(camera_only): | |
# this is equal to a loss for camera intrinsics | |
gt_pts_self = [ | |
torch.where( | |
camera_only[:, None, None, None], | |
(gt / gt[..., -1:].clip(1e-6)).clip(-2, 2), | |
gt, | |
) | |
for gt in gt_pts_self | |
] | |
pr_pts_self = [ | |
torch.where( | |
camera_only[:, None, None, None], | |
(pr / pr[..., -1:].clip(1e-6)).clip(-2, 2), | |
pr, | |
) | |
for pr in pr_pts_self | |
] | |
# # do not add cross view loss when there is only camera supervision | |
skys = [gt["sky_mask"] & ~valid for gt, valid in zip(gts, valids)] | |
return ( | |
gt_pts_self, | |
gt_pts_cross, | |
pr_pts_self, | |
pr_pts_cross, | |
gt_poses, | |
pr_poses, | |
valids, | |
skys, | |
pose_masks, | |
{"scale_loss": pose_scale_loss + pts_scale_loss}, | |
) | |
def compute_relative_pose_loss( | |
self, gt_trans, gt_quats, pr_trans, pr_quats, masks=None | |
): | |
if masks is None: | |
masks = torch.ones(len(gt_trans), dtype=torch.bool, device=gt_trans.device) | |
gt_trans_matrix1 = gt_trans[:, :, None, :].repeat(1, 1, gt_trans.shape[1], 1)[ | |
masks | |
] | |
gt_trans_matrix2 = gt_trans[:, None, :, :].repeat(1, gt_trans.shape[1], 1, 1)[ | |
masks | |
] | |
gt_quats_matrix1 = gt_quats[:, :, None, :].repeat(1, 1, gt_quats.shape[1], 1)[ | |
masks | |
] | |
gt_quats_matrix2 = gt_quats[:, None, :, :].repeat(1, gt_quats.shape[1], 1, 1)[ | |
masks | |
] | |
pr_trans_matrix1 = pr_trans[:, :, None, :].repeat(1, 1, pr_trans.shape[1], 1)[ | |
masks | |
] | |
pr_trans_matrix2 = pr_trans[:, None, :, :].repeat(1, pr_trans.shape[1], 1, 1)[ | |
masks | |
] | |
pr_quats_matrix1 = pr_quats[:, :, None, :].repeat(1, 1, pr_quats.shape[1], 1)[ | |
masks | |
] | |
pr_quats_matrix2 = pr_quats[:, None, :, :].repeat(1, pr_quats.shape[1], 1, 1)[ | |
masks | |
] | |
gt_rel_trans, gt_rel_quats = relative_pose_absT_quatR( | |
gt_trans_matrix1, gt_quats_matrix1, gt_trans_matrix2, gt_quats_matrix2 | |
) | |
pr_rel_trans, pr_rel_quats = relative_pose_absT_quatR( | |
pr_trans_matrix1, pr_quats_matrix1, pr_trans_matrix2, pr_quats_matrix2 | |
) | |
rel_trans_err = torch.norm(gt_rel_trans - pr_rel_trans, dim=-1) | |
rel_quats_err = torch.norm(gt_rel_quats - pr_rel_quats, dim=-1) | |
return rel_trans_err.mean() + rel_quats_err.mean() | |
def compute_pose_loss(self, gt_poses, pred_poses, masks=None): | |
""" | |
gt_pose: list of (Bx3, Bx4) | |
pred_pose: list of (Bx3, Bx4) | |
masks: None, or B | |
""" | |
gt_trans = torch.stack([gt[0] for gt in gt_poses], dim=1) # BxNx3 | |
gt_quats = torch.stack([gt[1] for gt in gt_poses], dim=1) # BXNX3 | |
pred_trans = torch.stack([pr[0] for pr in pred_poses], dim=1) # BxNx4 | |
pred_quats = torch.stack([pr[1] for pr in pred_poses], dim=1) # BxNx4 | |
if masks == None: | |
pose_loss = ( | |
torch.norm(pred_trans - gt_trans, dim=-1).mean() | |
+ torch.norm(pred_quats - gt_quats, dim=-1).mean() | |
) | |
else: | |
if not any(masks): | |
return torch.tensor(0.0) | |
pose_loss = ( | |
torch.norm(pred_trans - gt_trans, dim=-1)[masks].mean() | |
+ torch.norm(pred_quats - gt_quats, dim=-1)[masks].mean() | |
) | |
return pose_loss | |
def compute_loss(self, gts, preds, **kw): | |
( | |
gt_pts_cross, | |
pred_pts_cross, | |
gt_poses, | |
pr_poses, | |
masks, | |
skys, | |
pose_masks, | |
monitoring, | |
) = self.get_all_pts3d(gts, preds, **kw) | |
if self.sky_loss_value > 0: | |
assert ( | |
self.criterion.reduction == "none" | |
), "sky_loss_value should be 0 if no conf loss" | |
masks = [mask | sky for mask, sky in zip(masks, skys)] | |
# if self.sky_loss_value > 0: | |
# assert ( | |
# self.criterion.reduction == "none" | |
# ), "sky_loss_value should be 0 if no conf loss" | |
# for i, l in enumerate(ls_self): | |
# ls_self[i] = torch.where(skys[i][masks[i]], self.sky_loss_value, l) | |
self_name = type(self).__name__ | |
details = {} | |
# cross view loss and details | |
camera_only = gts[0]["camera_only"] | |
pred_pts_cross = [pred_pts[~camera_only] for pred_pts in pred_pts_cross] | |
gt_pts_cross = [gt_pts[~camera_only] for gt_pts in gt_pts_cross] | |
masks_cross = [mask[~camera_only] for mask in masks] | |
skys_cross = [sky[~camera_only] for sky in skys] | |
if "Quantile" in self.criterion.__class__.__name__: | |
# quantile masks have already been determined by self view losses, here pass in None as quantile | |
ls_cross, _ = self.criterion( | |
pred_pts_cross, gt_pts_cross, masks_cross, None | |
) | |
else: | |
ls_cross = [ | |
self.criterion(pred_pt[mask], gt_pt[mask]) | |
for pred_pt, gt_pt, mask in zip( | |
pred_pts_cross, gt_pts_cross, masks_cross | |
) | |
] | |
for i in range(len(ls_cross)): | |
details[f"gt_img{i + 1}"] = gts[i]["img"].permute(0, 2, 3, 1).detach() | |
details[f"valid_mask_{i + 1}"] = masks[i].detach() | |
if "img_mask" in gts[i] and "ray_mask" in gts[i]: | |
details[f"img_mask_{i + 1}"] = gts[i]["img_mask"].detach() | |
details[f"ray_mask_{i + 1}"] = gts[i]["ray_mask"].detach() | |
if "desc" in preds[i]: | |
details[f"desc_{i + 1}"] = preds[i]["desc"].detach() | |
if self.sky_loss_value > 0: | |
assert ( | |
self.criterion.reduction == "none" | |
), "sky_loss_value should be 0 if no conf loss" | |
for i, l in enumerate(ls_cross): | |
ls_cross[i] = torch.where( | |
skys_cross[i][masks_cross[i]], self.sky_loss_value, l | |
) | |
for i in range(len(ls_cross)): | |
details[self_name + f"_pts3d/{i+1}"] = float( | |
ls_cross[i].mean() if ls_cross[i].numel() > 0 else 0 | |
) | |
details[f"conf_{i+1}"] = preds[i]["conf"].detach() | |
ls = ls_cross | |
masks = masks_cross | |
details["img_ids"] = ( | |
np.arange(len(ls_cross)).tolist() | |
) | |
details["pose_loss"] = self.compute_pose_loss(gt_poses, pr_poses, pose_masks) | |
return Sum(*list(zip(ls, masks))), (details | monitoring) | |
class Regr3DPoseBatchList(Regr3DPose): | |
"""Ensure that all 3D points are correct. | |
Asymmetric loss: view1 is supposed to be the anchor. | |
P1 = RT1 @ D1 | |
P2 = RT2 @ D2 | |
loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1) | |
loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2) | |
= (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2) | |
""" | |
def __init__( | |
self, | |
criterion, | |
norm_mode="?avg_dis", | |
gt_scale=False, | |
sky_loss_value=2, | |
max_metric_scale=False, | |
): | |
super().__init__( | |
criterion, norm_mode, gt_scale, sky_loss_value, max_metric_scale | |
) | |
self.depth_only_criterion = DepthScaleShiftInvLoss() | |
self.single_view_criterion = ScaleInvLoss() | |
def reorg(self, ls_b, masks_b): | |
ids_split = [mask.sum(dim=(1, 2)) for mask in masks_b] | |
ls = [[] for _ in range(len(masks_b[0]))] | |
for i in range(len(ls_b)): | |
ls_splitted_i = torch.split(ls_b[i], ids_split[i].tolist()) | |
for j in range(len(masks_b[0])): | |
ls[j].append(ls_splitted_i[j]) | |
ls = [torch.cat(l) for l in ls] | |
return ls | |
def compute_loss(self, gts, preds, **kw): | |
( | |
gt_pts_cross, | |
pred_pts_cross, | |
gt_poses, | |
pr_poses, | |
masks, | |
skys, | |
pose_masks, | |
monitoring, | |
) = self.get_all_pts3d(gts, preds, **kw) | |
if self.sky_loss_value > 0: | |
assert ( | |
self.criterion.reduction == "none" | |
), "sky_loss_value should be 0 if no conf loss" | |
masks = [mask | sky for mask, sky in zip(masks, skys)] | |
camera_only = gts[0]["camera_only"] | |
depth_only = gts[0]["depth_only"] | |
single_view = gts[0]["single_view"] | |
is_metric = gts[0]["is_metric"] | |
# self view loss and details | |
if "Quantile" in self.criterion.__class__.__name__: | |
raise NotImplementedError | |
else: | |
# list [(B, h, w, 3)] x num_views -> list [num_views, h, w, 3] x B | |
masks_b = torch.unbind(torch.stack(masks, dim=1), dim=0) | |
self_name = type(self).__name__ | |
gt_pts_cross_b = torch.unbind( | |
torch.stack(gt_pts_cross, dim=1)[~camera_only], dim=0 | |
) | |
pred_pts_cross_b = torch.unbind( | |
torch.stack(pred_pts_cross, dim=1)[~camera_only], dim=0 | |
) | |
masks_cross_b = torch.unbind(torch.stack(masks, dim=1)[~camera_only], dim=0) | |
ls_cross_b = [] | |
for i in range(len(gt_pts_cross_b)): | |
if depth_only[~camera_only][i]: | |
ls_cross_b.append( | |
self.depth_only_criterion( | |
pred_pts_cross_b[i][..., -1], | |
gt_pts_cross_b[i][..., -1], | |
masks_cross_b[i], | |
) | |
) | |
elif single_view[~camera_only][i] and not is_metric[~camera_only][i]: | |
ls_cross_b.append( | |
self.single_view_criterion( | |
pred_pts_cross_b[i], gt_pts_cross_b[i], masks_cross_b[i] | |
) | |
) | |
else: | |
ls_cross_b.append( | |
self.criterion( | |
pred_pts_cross_b[i][masks_cross_b[i]], | |
gt_pts_cross_b[i][masks_cross_b[i]], | |
) | |
) | |
ls_cross = self.reorg(ls_cross_b, masks_cross_b) | |
if self.sky_loss_value > 0: | |
assert ( | |
self.criterion.reduction == "none" | |
), "sky_loss_value should be 0 if no conf loss" | |
masks_cross = [mask[~camera_only] for mask in masks] | |
skys_cross = [sky[~camera_only] for sky in skys] | |
for i, l in enumerate(ls_cross): | |
ls_cross[i] = torch.where( | |
skys_cross[i][masks_cross[i]], self.sky_loss_value, l | |
) | |
details = {} | |
for i in range(len(ls_cross)): | |
details[f"gt_img{i + 1}"] = gts[i]["img"].permute(0, 2, 3, 1).detach() | |
details[f"valid_mask_{i + 1}"] = masks[i].detach() | |
if "img_mask" in gts[i] and "ray_mask" in gts[i]: | |
details[f"img_mask_{i + 1}"] = gts[i]["img_mask"].detach() | |
details[f"ray_mask_{i + 1}"] = gts[i]["ray_mask"].detach() | |
if "desc" in preds[i]: | |
details[f"desc_{i + 1}"] = preds[i]["desc"].detach() | |
for i in range(len(ls_cross)): | |
details[self_name + f"_pts3d/{i+1}"] = float( | |
ls_cross[i].mean() if ls_cross[i].numel() > 0 else 0 | |
) | |
details[f"conf_{i+1}"] = preds[i]["conf"].detach() | |
ls = ls_cross | |
masks = masks_cross | |
details["img_ids"] = ( | |
np.arange(len(ls_cross)).tolist() | |
) | |
pose_masks = pose_masks * gts[i]["img_mask"] | |
details["pose_loss"] = self.compute_pose_loss(gt_poses, pr_poses, pose_masks) | |
return Sum(*list(zip(ls, masks))), (details | monitoring) | |
class ConfLoss(MultiLoss): | |
"""Weighted regression by learned confidence. | |
Assuming the input pixel_loss is a pixel-level regression loss. | |
Principle: | |
high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10) | |
low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10) | |
alpha: hyperparameter | |
""" | |
def __init__(self, pixel_loss, alpha=1): | |
super().__init__() | |
assert alpha > 0 | |
self.alpha = alpha | |
self.pixel_loss = pixel_loss.with_reduction("none") | |
def get_name(self): | |
return f"ConfLoss({self.pixel_loss})" | |
def get_conf_log(self, x): | |
return x, torch.log(x) | |
def compute_loss(self, gts, preds, **kw): | |
# compute per-pixel loss | |
losses_and_masks, details = self.pixel_loss(gts, preds, **kw) | |
if "is_self" in details and "img_ids" in details: | |
img_ids = details["img_ids"] | |
else: | |
img_ids = list(range(len(losses_and_masks))) | |
# weight by confidence | |
conf_losses = [] | |
for i in range(len(losses_and_masks)): | |
pred = preds[img_ids[i]] | |
conf_key = "conf" | |
camera_only = gts[0]["camera_only"] | |
conf, log_conf = self.get_conf_log( | |
pred[conf_key][~camera_only][losses_and_masks[i][1]] | |
) | |
conf_loss = losses_and_masks[i][0] * conf - self.alpha * log_conf | |
conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0 | |
conf_losses.append(conf_loss) | |
details[self.get_name() + f"_conf_loss/{img_ids[i]+1}"] = float( | |
conf_loss | |
) | |
details.pop("img_ids", None) | |
final_loss = sum(conf_losses) / len(conf_losses) * 2.0 | |
if "pose_loss" in details: | |
final_loss = ( | |
final_loss + details["pose_loss"].clip(max=0.3) * 5.0 | |
) # , details | |
if "scale_loss" in details: | |
final_loss = final_loss + details["scale_loss"] | |
return final_loss, details | |
class Regr3DPose_ScaleInv(Regr3DPose): | |
"""Same than Regr3D but invariant to depth shift. | |
if gt_scale == True: enforce the prediction to take the same scale than GT | |
""" | |
def get_all_pts3d(self, gts, preds): | |
# compute depth-normalized points | |
( | |
gt_pts_cross, | |
pr_pts_cross, | |
gt_poses, | |
pr_poses, | |
masks, | |
skys, | |
pose_masks, | |
monitoring, | |
) = super().get_all_pts3d(gts, preds) | |
# measure scene scale | |
_, gt_scale_cross = get_group_pointcloud_center_scale(gt_pts_cross, masks) | |
_, pred_scale_cross = get_group_pointcloud_center_scale(pr_pts_cross, masks) | |
# prevent predictions to be in a ridiculous range | |
pred_scale_cross = pred_scale_cross.clip(min=1e-3, max=1e3) | |
# subtract the median depth | |
if self.gt_scale: | |
pr_pts_cross = [ | |
pr_pt_cross * gt_scale_cross / pred_scale_cross | |
for pr_pt_cross in pr_pts_cross | |
] | |
else: | |
gt_pts_cross = [ | |
gt_pt_cross / gt_scale_cross for gt_pt_cross in gt_pts_cross | |
] | |
pr_pts_cross = [ | |
pr_pt_cross / pred_scale_cross for pr_pt_cross in pr_pts_cross | |
] | |
return ( | |
gt_pts_cross, | |
pr_pts_cross, | |
gt_poses, | |
pr_poses, | |
masks, | |
skys, | |
pose_masks, | |
monitoring, | |
) | |
def closed_form_scale_and_shift(pred, gt): | |
""" | |
Args: | |
pred: (B, H, W, C) | |
gt: (B, H, W, C) | |
valid_mask: (B, H, W) | |
Returns: | |
scale: (B,) | |
shift: (B,) | |
""" | |
assert pred.dim() == 4 and gt.dim() == 4, "Inputs must be 4D tensors" | |
B, H, W, C = pred.shape | |
device = pred.device | |
pred_flat = pred.view(-1, C) # (N, C) | |
gt_flat = gt.view(-1, C) # (N, C) | |
if C == 1: | |
pred_mean = pred_flat.mean(dim=0) | |
gt_mean = gt_flat.mean(dim=0) | |
numerator = ((pred_flat - pred_mean) * (gt_flat - gt_mean)).sum(dim=0) | |
denominator = ((pred_flat - pred_mean) ** 2).sum(dim=0).clamp(min=1e-6) | |
scale = numerator / denominator | |
shift = gt_mean - scale * pred_mean | |
return scale, shift | |
elif C == 3: | |
pred_mean = pred_flat.mean(0) | |
gt_mean = gt_flat.mean(0) | |
pred_centered = pred_flat - pred_mean | |
gt_centered = gt_flat - gt_mean | |
scale = (pred_centered * gt_centered).sum() / (pred_centered ** 2).sum().clamp(min=1e-6) | |
shift = gt_mean - scale * pred_mean | |
return scale, shift | |
else: | |
raise ValueError(f"Unsupported channel dimension C={C}. Only 1 or 3 channels are supported.") | |
def normalize_pointcloud(pts3d, valid_mask, eps=1e-3): | |
""" | |
pts3d: B, H, W, 3 | |
valid_mask: B, H, W | |
""" | |
dist = pts3d.norm(dim=-1) | |
dist_sum = (dist * valid_mask).sum(dim=[1,2]) | |
valid_count = valid_mask.sum(dim=[1,2]) | |
avg_scale = (dist_sum / (valid_count + eps)).clamp(min=eps, max=1e3) | |
# avg_scale = avg_scale.view(-1, 1, 1, 1, 1) | |
pts3d = pts3d / avg_scale.view(-1, 1, 1, 1) | |
return pts3d, avg_scale | |
def point_map_to_normal(point_map, mask, eps=1e-6): | |
""" | |
point_map: (B, H, W, 3) - 3D points laid out in a 2D grid | |
mask: (B, H, W) - valid pixels (bool) | |
Returns: | |
normals: (4, B, H, W, 3) - normal vectors for each of the 4 cross-product directions | |
valids: (4, B, H, W) - corresponding valid masks | |
""" | |
with torch.cuda.amp.autocast(enabled=False): | |
padded_mask = F.pad(mask, (1, 1, 1, 1), mode='constant', value=0) | |
pts = F.pad(point_map.permute(0, 3, 1, 2), (1,1,1,1), mode='constant', value=0).permute(0, 2, 3, 1) | |
center = pts[:, 1:-1, 1:-1, :] # B,H,W,3 | |
up = pts[:, :-2, 1:-1, :] | |
left = pts[:, 1:-1, :-2 , :] | |
down = pts[:, 2:, 1:-1, :] | |
right = pts[:, 1:-1, 2:, :] | |
up_dir = up - center | |
left_dir = left - center | |
down_dir = down - center | |
right_dir = right - center | |
n1 = torch.cross(up_dir, left_dir, dim=-1) # up x left | |
n2 = torch.cross(left_dir, down_dir, dim=-1) # left x down | |
n3 = torch.cross(down_dir, right_dir, dim=-1) # down x right | |
n4 = torch.cross(right_dir,up_dir, dim=-1) # right x up | |
v1 = padded_mask[:, :-2, 1:-1] & padded_mask[:, 1:-1, 1:-1] & padded_mask[:, 1:-1, :-2] | |
v2 = padded_mask[:, 1:-1, :-2 ] & padded_mask[:, 1:-1, 1:-1] & padded_mask[:, 2:, 1:-1] | |
v3 = padded_mask[:, 2:, 1:-1] & padded_mask[:, 1:-1, 1:-1] & padded_mask[:, 1:-1, 2:] | |
v4 = padded_mask[:, 1:-1, 2: ] & padded_mask[:, 1:-1, 1:-1] & padded_mask[:, :-2, 1:-1] | |
normals = torch.stack([n1, n2, n3, n4], dim=0) # shape [4, B, H, W, 3] | |
valids = torch.stack([v1, v2, v3, v4], dim=0) # shape [4, B, H, W] | |
normals = F.normalize(normals, p=2, dim=-1, eps=eps) | |
# Zero out invalid entries so they don't pollute subsequent computations | |
# normals = normals * valids.unsqueeze(-1) | |
return normals, valids | |
class HuberLoss(nn.Module): | |
def __init__(self, delta=1e-1, reduction="mean"): | |
super().__init__() | |
self.delta = delta | |
self.reduction = reduction | |
def forward(self, pred, target): | |
err = pred - target | |
abs_err = err.abs() | |
sq = 0.5 * err.pow(2) / self.delta | |
lin = abs_err - 0.5 * self.delta | |
loss = torch.where(abs_err <= self.delta, sq, lin) | |
if self.reduction == "mean": | |
return loss.mean() | |
if self.reduction == "sum": | |
return loss.sum() | |
return loss # 'none' | |
class CameraLoss(nn.Module): | |
def __init__(self, delta=1e-1, weights=(1.0, 1.0, 0.5)): | |
super().__init__() | |
self.huber = HuberLoss(delta=delta) | |
self.weights = weights | |
def forward(self, pred_pose, gt_pose): | |
loss_T = self.huber(pred_pose[..., :3], gt_pose[..., :3]) | |
loss_R = self.huber(pred_pose[..., 3:7], gt_pose[..., 3:7]) | |
loss_fl = self.huber(pred_pose[..., 7:], gt_pose[..., 7:]) | |
return (self.weights[0] * loss_T + self.weights[1] * loss_R + self.weights[2] * loss_fl) | |
class DepthOrPmapLoss(nn.Module): | |
def __init__(self, alpha=0.01): | |
super().__init__() | |
self.alpha = alpha | |
self.grad_scales = 3 | |
self.gamma = 1.0 | |
def gradient_loss_multi_scale(self, pred, gt, mask): | |
total = 0 | |
for s in range(self.grad_scales): | |
step = 2 ** s | |
pred_s = pred[:, ::step, ::step] | |
gt_s = gt[:, ::step, ::step] | |
mask_s = mask[:, ::step, ::step] | |
total += self.normal_loss(pred_s, gt_s, mask_s) | |
return total / self.grad_scales | |
def normal_loss(self, pred, gt, mask): | |
pred_norm, _ = point_map_to_normal(pred, mask) | |
gt_norm, _ = point_map_to_normal(gt, mask) | |
cos_sim = F.cosine_similarity(pred_norm, gt_norm, dim=-1) | |
return 1 - cos_sim.mean() | |
def image_gradient_loss(self, pred, gt, mask): | |
assert pred.dim() == 4 and pred.shape[-1] == 1 | |
assert gt.shape == pred.shape | |
B, H, W, _ = pred.shape | |
device = pred.device | |
dx_pred = pred[:, :, 1:] - pred[:, :, :-1] # [B,H,W-1,1] | |
dx_gt = gt[:, :, 1:] - gt[:, :, :-1] | |
dx_mask = mask[:, :, 1:] & mask[:, :, :-1] # [B,H,W-1] | |
dy_pred = pred[:, 1:, :] - pred[:, :-1, :] # [B,H-1,W,1] | |
dy_gt = gt[:, 1:, :] - gt[:, :-1, :] | |
dy_mask = mask[:, 1:, :] & mask[:, :-1, :] # [B,H-1,W] | |
min_h = min(dy_pred.shape[1], dx_pred.shape[1]) | |
min_w = min(dx_pred.shape[2], dy_pred.shape[2]) | |
dx_pred = dx_pred[:, :min_h, :min_w, :] # [B,H-1,W-1,1] | |
dx_gt = dx_gt[:, :min_h, :min_w, :] | |
dx_mask = dx_mask[:, :min_h, :min_w] # [B,H-1,W-1] | |
dy_pred = dy_pred[:, :min_h, :min_w, :] # [B,H-1,W-1,1] | |
dy_gt = dy_gt[:, :min_h, :min_w, :] | |
dy_mask = dy_mask[:, :min_h, :min_w] # [B,H-1,W-1] | |
loss_dx = F.l1_loss(dx_pred * dx_mask.unsqueeze(-1), | |
dx_gt * dx_mask.unsqueeze(-1)) | |
loss_dy = F.l1_loss(dy_pred * dy_mask.unsqueeze(-1), | |
dy_gt * dy_mask.unsqueeze(-1)) | |
return (loss_dx + loss_dy) / 2 | |
def forward(self, pred, gt, sigma_p, sigma_g, valid_mask): | |
if self.training: | |
pred_normalized, _ = normalize_pointcloud(pred, valid_mask) | |
gt_normalized, _ = normalize_pointcloud(gt, valid_mask) | |
else: | |
pred_normalized, gt_normalized = pred, gt | |
scale, shift = closed_form_scale_and_shift( | |
pred_normalized, gt_normalized | |
) | |
pred_aligned = pred_normalized * scale + shift | |
sigma_p = sigma_p.clamp(min=1e-6) | |
sigma_g = sigma_g.clamp(min=1e-6) | |
#sigma = 0.5 * (sigma_p + sigma_g) | |
sigma = sigma_p | |
diff = (pred_aligned - gt_normalized).abs() | |
C = diff.shape[-1] | |
main_loss = (sigma[..., None].expand(-1, -1, -1, C) * diff)[valid_mask[..., None].expand(-1, -1, -1, C)].mean() | |
if pred.shape[-1] == 1: | |
grad_loss = self.image_gradient_loss(pred_aligned, gt_normalized, valid_mask) | |
else: | |
grad_loss = self.gradient_loss_multi_scale(pred_aligned, gt_normalized, valid_mask) | |
reg_loss = -self.alpha * torch.log(sigma.clamp(min=1e-6))[valid_mask].mean() | |
# return main + reg | |
return self.gamma * main_loss + grad_loss + reg_loss | |
class TrackLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.bce = nn.BCEWithLogitsLoss(reduction="none") | |
self.alpha = 0.2 | |
self.gamma = 1.0 | |
def forward(self, y_pr, y_gt, vis_pr, vis_gt, w_p, w_g): | |
#w = 0.5 * (w_p + w_g) | |
w = w_p | |
l_pos = (y_pr - y_gt).norm(dim=-1) | |
l_pos = (w * l_pos).mean() | |
l_vis = self.bce(vis_pr, vis_gt.float()) | |
l_vis = (w * l_vis).mean() | |
return l_pos + l_vis | |
class DistillLoss(MultiLoss): | |
def __init__(self, lambda_track=0.05): | |
super().__init__() | |
self.cam_loss = CameraLoss( | |
delta=0.1, | |
weights=(1.0, 1.0, 0.5) | |
) | |
self.depth_loss = DepthOrPmapLoss(alpha=0.1)#init 0.01 now 0.1 | |
self.pmap_loss = DepthOrPmapLoss(alpha=0.1) | |
self.track_loss = TrackLoss() | |
self.lambda_track = lambda_track | |
def get_name(self): return "DistillLoss" | |
def compute_loss(self, gts, preds, | |
track_queries=None, track_preds=None): | |
# ---------- Lcamera ---------- | |
cam_gt = torch.stack([g['camera_pose'] for g in gts], dim=1) | |
cam_pr = torch.stack([p['camera_pose'] for p in preds], dim=1) | |
Lcamera = self.cam_loss(cam_pr, cam_gt) | |
# ---------- Ldepth ---------- | |
depth_terms = [] | |
for g,p in zip(gts, preds): | |
if ('depth' in g) and ('depth' in p): | |
sigma_p = p['depth_conf'] | |
sigma_g = g['depth_conf'] | |
valid_mask = g['valid_mask'] | |
if not valid_mask.any(): | |
valid_mask = torch.ones_like(g['valid_mask']) | |
depth_terms.append(self.depth_loss(p['depth'], g['depth'], sigma_p, sigma_g, valid_mask)) | |
Ldepth = torch.stack(depth_terms).mean() if depth_terms else torch.zeros_like(Lcamera) | |
# ---------- Lpmap ---------- | |
pmap_terms = [] | |
for g,p in zip(gts,preds): | |
sigma_p = p['conf'] | |
sigma_g = g['conf'] | |
valid_mask = g['valid_mask'] | |
if not valid_mask.any(): | |
valid_mask = torch.ones_like(g['valid_mask']) | |
pmap_terms.append( | |
self.pmap_loss(p['pts3d_in_other_view'], | |
g['pts3d_in_other_view'], | |
sigma_p, | |
sigma_g, | |
valid_mask)) | |
Lpmap = torch.stack(pmap_terms).mean() | |
# ---------- Ltrack ---------- | |
if ('track' in gts[0]) and ('track' in preds[0]): | |
y_gt = torch.stack([g['track'] for g in gts], dim=1) | |
vis_gt = torch.stack([g['vis'] for g in gts], dim=1) | |
y_pr = torch.stack([p['track'] for p in preds], dim=1) | |
vis_pr = torch.stack([p['vis'] for p in preds], dim=1) | |
w_p = torch.stack([p['track_conf'] for p in preds], dim=1) | |
w_g = torch.stack([g['track_conf'] for g in gts], dim=1) | |
Ltrack = self.track_loss(y_pr, y_gt, vis_pr, vis_gt, w_p, w_g) | |
else: | |
Ltrack = torch.zeros_like(Lcamera) | |
total = Lcamera * 20 + Ldepth * 20 + Lpmap * 10 + self.lambda_track * 10 * Ltrack | |
details = {} | |
details['Lcamera'] = float(Lcamera) * 20 | |
details['Ldepth'] = float(Ldepth) * 20 | |
details['Lpmap'] = float(Lpmap) * 10 | |
details['Ltrack'] = float(Ltrack) * self.lambda_track * 10 | |
details['total'] = float(total) | |
return total, details |