lch01's picture
update to the published ver
28c1b3e
from typing import Callable, Optional
from torch import Tensor, nn
class Mlp(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = nn.GELU,
drop: float = 0.0,
bias: bool = True,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.drop = nn.Dropout(drop)
def forward(self, x: Tensor) -> Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x