# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from einops import rearrange, repeat from .blocks import EfficientUpdateFormer, CorrBlock from .utils import sample_features4d, get_2d_embedding, get_2d_sincos_pos_embed from .modules import Mlp class BaseTrackerPredictor(nn.Module): def __init__( self, stride=1, corr_levels=5, corr_radius=4, latent_dim=128, hidden_size=384, use_spaceatt=True, depth=6, max_scale=518, predict_conf=True, ): super(BaseTrackerPredictor, self).__init__() """ The base template to create a track predictor Modified from https://github.com/facebookresearch/co-tracker/ and https://github.com/facebookresearch/vggsfm """ self.stride = stride self.latent_dim = latent_dim self.corr_levels = corr_levels self.corr_radius = corr_radius self.hidden_size = hidden_size self.max_scale = max_scale self.predict_conf = predict_conf self.flows_emb_dim = latent_dim // 2 self.corr_mlp = Mlp( in_features=self.corr_levels * (self.corr_radius * 2 + 1) ** 2, hidden_features=self.hidden_size, out_features=self.latent_dim, ) self.transformer_dim = self.latent_dim + self.latent_dim + self.latent_dim + 4 self.query_ref_token = nn.Parameter(torch.randn(1, 2, self.transformer_dim)) space_depth = depth if use_spaceatt else 0 time_depth = depth self.updateformer = EfficientUpdateFormer( space_depth=space_depth, time_depth=time_depth, input_dim=self.transformer_dim, hidden_size=self.hidden_size, output_dim=self.latent_dim + 2, mlp_ratio=4.0, add_space_attn=use_spaceatt, ) self.fmap_norm = nn.LayerNorm(self.latent_dim) self.ffeat_norm = nn.GroupNorm(1, self.latent_dim) # A linear layer to update track feats at each iteration self.ffeat_updater = nn.Sequential(nn.Linear(self.latent_dim, self.latent_dim), nn.GELU()) self.vis_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) if predict_conf: self.conf_predictor = nn.Sequential(nn.Linear(self.latent_dim, 1)) def forward(self, query_points, fmaps=None, iters=6, return_feat=False, down_ratio=1, apply_sigmoid=True): """ query_points: B x N x 2, the number of batches, tracks, and xy fmaps: B x S x C x HH x WW, the number of batches, frames, and feature dimension. note HH and WW is the size of feature maps instead of original images """ B, N, D = query_points.shape B, S, C, HH, WW = fmaps.shape assert D == 2, "Input points must be 2D coordinates" # apply a layernorm to fmaps here fmaps = self.fmap_norm(fmaps.permute(0, 1, 3, 4, 2)) fmaps = fmaps.permute(0, 1, 4, 2, 3) # Scale the input query_points because we may downsample the images # by down_ratio or self.stride # e.g., if a 3x1024x1024 image is processed to a 128x256x256 feature map # its query_points should be query_points/4 if down_ratio > 1: query_points = query_points / float(down_ratio) query_points = query_points / float(self.stride) # Init with coords as the query points # It means the search will start from the position of query points at the reference frames coords = query_points.clone().reshape(B, 1, N, 2).repeat(1, S, 1, 1) # Sample/extract the features of the query points in the query frame query_track_feat = sample_features4d(fmaps[:, 0], coords[:, 0]) # init track feats by query feats track_feats = query_track_feat.unsqueeze(1).repeat(1, S, 1, 1) # B, S, N, C # back up the init coords coords_backup = coords.clone() fcorr_fn = CorrBlock(fmaps, num_levels=self.corr_levels, radius=self.corr_radius) coord_preds = [] # Iterative Refinement for _ in range(iters): # Detach the gradients from the last iteration # (in my experience, not very important for performance) coords = coords.detach() fcorrs = fcorr_fn.corr_sample(track_feats, coords) corr_dim = fcorrs.shape[3] fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, corr_dim) fcorrs_ = self.corr_mlp(fcorrs_) # Movement of current coords relative to query points flows = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) flows_emb = get_2d_embedding(flows, self.flows_emb_dim, cat_coords=False) # (In my trials, it is also okay to just add the flows_emb instead of concat) flows_emb = torch.cat([flows_emb, flows / self.max_scale, flows / self.max_scale], dim=-1) track_feats_ = track_feats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) # Concatenate them as the input for the transformers transformer_input = torch.cat([flows_emb, fcorrs_, track_feats_], dim=2) # 2D positional embed # TODO: this can be much simplified pos_embed = get_2d_sincos_pos_embed(self.transformer_dim, grid_size=(HH, WW)).to(query_points.device) sampled_pos_emb = sample_features4d(pos_embed.expand(B, -1, -1, -1), coords[:, 0]) sampled_pos_emb = rearrange(sampled_pos_emb, "b n c -> (b n) c").unsqueeze(1) x = transformer_input + sampled_pos_emb # Add the query ref token to the track feats query_ref_token = torch.cat( [self.query_ref_token[:, 0:1], self.query_ref_token[:, 1:2].expand(-1, S - 1, -1)], dim=1 ) x = x + query_ref_token.to(x.device).to(x.dtype) # B, N, S, C x = rearrange(x, "(b n) s d -> b n s d", b=B) # Compute the delta coordinates and delta track features delta, _ = self.updateformer(x) # BN, S, C delta = rearrange(delta, " b n s d -> (b n) s d", b=B) delta_coords_ = delta[:, :, :2] delta_feats_ = delta[:, :, 2:] track_feats_ = track_feats_.reshape(B * N * S, self.latent_dim) delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) # Update the track features track_feats_ = self.ffeat_updater(self.ffeat_norm(delta_feats_)) + track_feats_ track_feats = track_feats_.reshape(B, N, S, self.latent_dim).permute(0, 2, 1, 3) # BxSxNxC # B x S x N x 2 coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) # Force coord0 as query # because we assume the query points should not be changed coords[:, 0] = coords_backup[:, 0] # The predicted tracks are in the original image scale if down_ratio > 1: coord_preds.append(coords * self.stride * down_ratio) else: coord_preds.append(coords * self.stride) # B, S, N vis_e = self.vis_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) if apply_sigmoid: vis_e = torch.sigmoid(vis_e) if self.predict_conf: conf_e = self.conf_predictor(track_feats.reshape(B * S * N, self.latent_dim)).reshape(B, S, N) if apply_sigmoid: conf_e = torch.sigmoid(conf_e) else: conf_e = None if return_feat: return coord_preds, vis_e, track_feats, query_track_feat, conf_e else: return coord_preds, vis_e, conf_e