Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
import google.generativeai as genai
|
| 4 |
+
import logging
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
+
from typing import List
|
| 9 |
+
|
| 10 |
+
# --- 配置 ---
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
# 从环境变量获取 API 密钥和后端 URL
|
| 15 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
| 16 |
+
SEARCH_API_BASE_URL = os.getenv("SEARCH_API_BASE_URL")
|
| 17 |
+
|
| 18 |
+
# 配置 Google Gemini
|
| 19 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
| 20 |
+
# 使用最新的 Flash 模型,性价比高
|
| 21 |
+
gemini_model = genai.GenerativeModel('gemini-2.5-flash')
|
| 22 |
+
|
| 23 |
+
# --- FastAPI 应用设置 ---
|
| 24 |
+
app = FastAPI(
|
| 25 |
+
title="AI Search Agent",
|
| 26 |
+
description="一个使用 Gemini-2.5-Flash 将自然语言转换为学术搜索查询的智能中间层。",
|
| 27 |
+
version="1.0.0"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# 配置 CORS,允许您的前端 Space 访问
|
| 31 |
+
# TODO: 为了安全,您应该将 "*" 替换为您的前端 Space 的 URL
|
| 32 |
+
app.add_middleware(
|
| 33 |
+
CORSMiddleware,
|
| 34 |
+
allow_origins=["*"], # 允许所有来源
|
| 35 |
+
allow_credentials=True,
|
| 36 |
+
allow_methods=["*"],
|
| 37 |
+
allow_headers=["*"],
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# --- 数据模型 ---
|
| 41 |
+
class SearchRequest(BaseModel):
|
| 42 |
+
platform: str
|
| 43 |
+
query: str
|
| 44 |
+
max_results: int = 10
|
| 45 |
+
|
| 46 |
+
# --- 核心 AI 功能 ---
|
| 47 |
+
async def get_ai_keywords(natural_language_query: str) -> str:
|
| 48 |
+
"""
|
| 49 |
+
使用 Gemini 将自然语言查询转换为优化的布尔逻辑搜索关键词。
|
| 50 |
+
"""
|
| 51 |
+
if not GEMINI_API_KEY:
|
| 52 |
+
logger.warning("GEMINI_API_KEY 未设置,将使用原始查询。")
|
| 53 |
+
return natural_language_query
|
| 54 |
+
|
| 55 |
+
# 精心设计的 Prompt
|
| 56 |
+
prompt = f"""
|
| 57 |
+
You are an expert academic researcher. Your task is to convert a user's natural language query into a highly effective, concise, boolean-logic keyword string for searching academic databases like PubMed.
|
| 58 |
+
- Use boolean operators like AND, OR.
|
| 59 |
+
- Use parentheses for grouping.
|
| 60 |
+
- Focus on core concepts.
|
| 61 |
+
- Keep the string concise and in English.
|
| 62 |
+
- Do not add any explanation, markdown, or quotation marks. Just return the pure keyword string.
|
| 63 |
+
|
| 64 |
+
User Query: "{natural_language_query}"
|
| 65 |
+
Keyword String:
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
logger.info(f"向 Gemini 发送请求,查询: '{natural_language_query}'")
|
| 70 |
+
response = await gemini_model.generate_content_async(prompt)
|
| 71 |
+
optimized_query = response.text.strip()
|
| 72 |
+
|
| 73 |
+
logger.info(f"原始查询: '{natural_language_query}' -> Gemini 优化关键词: '{optimized_query}'")
|
| 74 |
+
|
| 75 |
+
# 如果AI返回空,则回退到原始查询
|
| 76 |
+
if not optimized_query:
|
| 77 |
+
logger.warning("Gemini 返回空结果,回退到原始查询。")
|
| 78 |
+
return natural_language_query
|
| 79 |
+
|
| 80 |
+
return optimized_query
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.error(f"调用 Gemini API 失败: {e}")
|
| 83 |
+
# 如果AI调用失败,就回退到使用原始查询
|
| 84 |
+
return natural_language_query
|
| 85 |
+
|
| 86 |
+
# --- API 端点 ---
|
| 87 |
+
@app.get("/")
|
| 88 |
+
def read_root():
|
| 89 |
+
return {"status": "AI Search Agent is running"}
|
| 90 |
+
|
| 91 |
+
@app.post("/search")
|
| 92 |
+
async def intelligent_search(request: SearchRequest):
|
| 93 |
+
"""
|
| 94 |
+
接收前端请求,进行 AI 优化,然后代理到搜索后端。
|
| 95 |
+
"""
|
| 96 |
+
if not SEARCH_API_BASE_URL:
|
| 97 |
+
raise HTTPException(status_code=500, detail="SEARCH_API_BASE_URL 未配置")
|
| 98 |
+
|
| 99 |
+
# 1. 使用 Gemini 优化查询
|
| 100 |
+
optimized_query = await get_ai_keywords(request.query)
|
| 101 |
+
|
| 102 |
+
# 2. 准备发往 `paper-mcp-agent` 的请求体
|
| 103 |
+
search_payload = {
|
| 104 |
+
"platform": request.platform,
|
| 105 |
+
"query": optimized_query, # 使用优化后的查询
|
| 106 |
+
"max_results": request.max_results
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
# 3. 调用 `paper-mcp-agent` 搜索后端
|
| 110 |
+
try:
|
| 111 |
+
logger.info(f"向搜索后端发送请求: {search_payload}")
|
| 112 |
+
search_url = f"{SEARCH_API_BASE_URL}/search"
|
| 113 |
+
response = requests.post(search_url, json=search_payload, timeout=30)
|
| 114 |
+
response.raise_for_status() # 如果状态码不是 2xx,则抛出异常
|
| 115 |
+
|
| 116 |
+
search_results = response.json()
|
| 117 |
+
|
| 118 |
+
# 在最终结果中包含原始查询和优化后的查询,便于调试
|
| 119 |
+
search_results['original_query'] = request.query
|
| 120 |
+
search_results['optimized_query'] = optimized_query
|
| 121 |
+
|
| 122 |
+
return search_results
|
| 123 |
+
|
| 124 |
+
except requests.exceptions.RequestException as e:
|
| 125 |
+
logger.error(f"调用搜索后端失败: {e}")
|
| 126 |
+
raise HTTPException(status_code=503, detail=f"无法连接到搜索服务: {str(e)}")
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logger.error(f"处理搜索时发生未知错误: {e}")
|
| 129 |
+
raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(e)}")
|