|
"""LangGraph Agent""" |
|
import os |
|
|
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
|
|
|
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
|
|
|
|
from langchain_core.messages import AIMessage |
|
from difflib import SequenceMatcher |
|
import time |
|
|
|
from tools import add, subtract, multiply, divide, modulus, wiki_search, web_search, arvix_search, search_metadata |
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
search_metadata, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "google"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-preview-05-20", temperature=1) |
|
elif provider == "groq": |
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
|
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
messages = state["messages"] |
|
|
|
if len(messages) > 1 and "No matching results found in metadata" not in messages[-1].content: |
|
|
|
new_messages = [ |
|
SystemMessage(content="You are a helpful assistant. Use the following retrieved information to answer the question. If the information is relevant, use it directly. If not, use your own knowledge."), |
|
HumanMessage(content=f"Question: {messages[-2].content}\n\nRetrieved Information:\n{messages[-1].content}") |
|
] |
|
time.sleep(2) |
|
return {"messages": [llm_with_tools.invoke(new_messages)]} |
|
else: |
|
|
|
time.sleep(2) |
|
return {"messages": [llm_with_tools.invoke(messages)]} |
|
|
|
def retriever(state: MessagesState): |
|
query = state["messages"][-1].content |
|
result = search_metadata(query) |
|
return {"messages": [AIMessage(content=result)]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
|
|
builder.set_entry_point("retriever") |
|
|
|
|
|
builder.add_edge("retriever", "assistant") |
|
|
|
|
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |