"""LangGraph Agent""" import os from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults # from langchain_community.document_loaders import WikipediaLoader # from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool # from langchain.tools.retriever import create_retriever_tool # from supabase.client import Client, create_client from langchain_core.messages import AIMessage from difflib import SequenceMatcher import time # Add time import from tools import add, subtract, multiply, divide, modulus, wiki_search, web_search, arvix_search, search_metadata # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, search_metadata, ] # Build graph function def build_graph(provider: str = "google"): """Build the graph""" # Load environment variables from .env file if provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-preview-05-20", temperature=1) elif provider == "groq": # Groq https://console.groq.com/docs/models llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it elif provider == "huggingface": # TODO: Add huggingface endpoint llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ), ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" messages = state["messages"] # If we have retrieved information, use it if len(messages) > 1 and "No matching results found in metadata" not in messages[-1].content: # Create a new message list with proper structure new_messages = [ SystemMessage(content="You are a helpful assistant. Use the following retrieved information to answer the question. If the information is relevant, use it directly. If not, use your own knowledge."), HumanMessage(content=f"Question: {messages[-2].content}\n\nRetrieved Information:\n{messages[-1].content}") ] time.sleep(2) # Add 2 second sleep before tool call return {"messages": [llm_with_tools.invoke(new_messages)]} else: # If no retrieved information, just use the original message time.sleep(2) # Add 2 second sleep before tool call return {"messages": [llm_with_tools.invoke(messages)]} def retriever(state: MessagesState): query = state["messages"][-1].content result = search_metadata(query) return {"messages": [AIMessage(content=result)]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Start with retriever builder.set_entry_point("retriever") # After retriever, go to assistant builder.add_edge("retriever", "assistant") # Assistant can either use tools or finish builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile()