File size: 5,947 Bytes
4057a1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import random

from torchvision import transforms
from PIL import Image
import os
import torch
import glob
from torchvision.datasets import MNIST, CIFAR10, FashionMNIST, ImageFolder
import numpy as np
import torch.multiprocessing
import json

# import imgaug.augmenters as iaa
# from perlin import rand_perlin_2d_np

torch.multiprocessing.set_sharing_strategy('file_system')


def get_data_transforms(size, isize, mean_train=None, std_train=None):
    mean_train = [0.485, 0.456, 0.406] if mean_train is None else mean_train
    std_train = [0.229, 0.224, 0.225] if std_train is None else std_train
    data_transforms = transforms.Compose([
        transforms.Resize((size, size)),
        transforms.ToTensor(),
        transforms.CenterCrop(isize),
        transforms.Normalize(mean=mean_train,
                             std=std_train)])
    gt_transforms = transforms.Compose([
        transforms.Resize((size, size)),
        transforms.CenterCrop(isize),
        transforms.ToTensor()])
    return data_transforms, gt_transforms

class MVTecDataset(torch.utils.data.Dataset):
    def __init__(self, root, transform, gt_transform, phase):
        if phase == 'train':
            self.img_path = os.path.join(root, 'train')
        else:
            self.img_path = os.path.join(root, 'test')
            self.gt_path = os.path.join(root, 'ground_truth')
        self.transform = transform
        self.gt_transform = gt_transform
        # load dataset
        self.img_paths, self.gt_paths, self.labels, self.types = self.load_dataset()  # self.labels => good : 0, anomaly : 1
        self.cls_idx = 0

    def load_dataset(self):

        img_tot_paths = []
        gt_tot_paths = []
        tot_labels = []
        tot_types = []

        defect_types = os.listdir(self.img_path)

        for defect_type in defect_types:
            if defect_type == 'good':
                img_paths = glob.glob(os.path.join(self.img_path, defect_type) + "/*.png") + \
                            glob.glob(os.path.join(self.img_path, defect_type) + "/*.JPG") + \
                            glob.glob(os.path.join(self.img_path, defect_type) + "/*.bmp")
                img_tot_paths.extend(img_paths)
                gt_tot_paths.extend([0] * len(img_paths))
                tot_labels.extend([0] * len(img_paths))
                tot_types.extend(['good'] * len(img_paths))
            else:
                img_paths = glob.glob(os.path.join(self.img_path, defect_type) + "/*.png") + \
                            glob.glob(os.path.join(self.img_path, defect_type) + "/*.JPG") + \
                            glob.glob(os.path.join(self.img_path, defect_type) + "/*.bmp")
                gt_paths = glob.glob(os.path.join(self.gt_path, defect_type) + "/*.png")
                img_paths.sort()
                gt_paths.sort()
                img_tot_paths.extend(img_paths)
                gt_tot_paths.extend(gt_paths)
                tot_labels.extend([1] * len(img_paths))
                tot_types.extend([defect_type] * len(img_paths))

        assert len(img_tot_paths) == len(gt_tot_paths), "Something wrong with test and ground truth pair!"

        return np.array(img_tot_paths), np.array(gt_tot_paths), np.array(tot_labels), np.array(tot_types)

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, idx):
        img_path, gt, label, img_type = self.img_paths[idx], self.gt_paths[idx], self.labels[idx], self.types[idx]
        img = Image.open(img_path).convert('RGB')
        img = self.transform(img)
        if label == 0:
            gt = torch.zeros([1, img.size()[-2], img.size()[-2]])
        else:
            gt = Image.open(gt)
            gt = self.gt_transform(gt)

        assert img.size()[1:] == gt.size()[1:], "image.size != gt.size !!!"

        return img, gt, label, img_path


class RealIADDataset(torch.utils.data.Dataset):
    def __init__(self, root, category, transform, gt_transform, phase):
        self.img_path = os.path.join(root, 'realiad_1024', category)
        self.transform = transform
        self.gt_transform = gt_transform
        self.phase = phase

        json_path = os.path.join(root, 'realiad_jsons', 'realiad_jsons', category + '.json')
        with open(json_path) as file:
            class_json = file.read()
        class_json = json.loads(class_json)

        self.img_paths, self.gt_paths, self.labels, self.types = [], [], [], []

        data_set = class_json[phase]
        for sample in data_set:
            self.img_paths.append(os.path.join(root, 'realiad_1024', category, sample['image_path']))
            label = sample['anomaly_class'] != 'OK'
            if label:
                self.gt_paths.append(os.path.join(root, 'realiad_1024', category, sample['mask_path']))
            else:
                self.gt_paths.append(None)
            self.labels.append(label)
            self.types.append(sample['anomaly_class'])

        self.img_paths = np.array(self.img_paths)
        self.gt_paths = np.array(self.gt_paths)
        self.labels = np.array(self.labels)
        self.types = np.array(self.types)
        self.cls_idx = 0

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, idx):
        img_path, gt, label, img_type = self.img_paths[idx], self.gt_paths[idx], self.labels[idx], self.types[idx]
        img = Image.open(img_path).convert('RGB')
        img = self.transform(img)

        if self.phase == 'train':
            return img, label

        if label == 0:
            gt = torch.zeros([1, img.size()[-2], img.size()[-2]])
        else:
            gt = Image.open(gt)
            gt = self.gt_transform(gt)

        assert img.size()[1:] == gt.size()[1:], "image.size != gt.size !!!"

        return img, gt, label, img_path