File size: 15,019 Bytes
f977a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
from numpy.random import normal
import  random
import logging
import numpy as np
from torch.nn import functional as F
from sklearn.metrics import roc_auc_score,  precision_recall_curve, average_precision_score
import cv2
import matplotlib.pyplot as plt
from sklearn.metrics import auc
from skimage import measure
import pandas as pd
from numpy import ndarray
from statistics import mean
import os
from functools import partial
import math
from tqdm import tqdm
import torch.backends.cudnn as cudnn

def get_logger(name, save_path=None, level='INFO'):
    logger = logging.getLogger(name)
    logger.setLevel(getattr(logging, level))

    log_format = logging.Formatter('%(message)s')
    streamHandler = logging.StreamHandler()
    streamHandler.setFormatter(log_format)
    logger.addHandler(streamHandler)

    if not save_path is None:
        os.makedirs(save_path, exist_ok=True)
        fileHandler = logging.FileHandler(os.path.join(save_path, 'log.txt'))
        fileHandler.setFormatter(log_format)
        logger.addHandler(fileHandler)
    return logger

def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def modify_grad(x, inds, factor=0.):
    # print(inds.shape)
    inds = inds.expand_as(x)
    # print(x.shape)
    # print(inds.shape)
    x[inds] *= factor
    return x


def modify_grad_v2(x, factor):
    factor = factor.expand_as(x)
    x *= factor
    return x

def global_cosine_hm_adaptive(a, b, y=3):
    cos_loss = torch.nn.CosineSimilarity()
    loss = 0
    for item in range(len(a)):
        a_ = a[item].detach()
        b_ = b[item]
        with torch.no_grad():
            point_dist = 1 - cos_loss(a_, b_).unsqueeze(1).detach()
        mean_dist = point_dist.mean()
        # std_dist = point_dist.reshape(-1).std()
        # thresh = torch.topk(point_dist.reshape(-1), k=int(point_dist.numel() * (1 - p)))[0][-1]
        factor = (point_dist/mean_dist)**(y)
        # factor = factor/torch.max(factor)
        # factor = torch.clip(factor, min=min_grad)
        # print(thresh)
        loss += torch.mean(1 - cos_loss(a_.reshape(a_.shape[0], -1),
                                        b_.reshape(b_.shape[0], -1)))
        partial_func = partial(modify_grad_v2, factor=factor)
        b_.register_hook(partial_func)

    loss = loss / len(a)
    return loss

def cal_anomaly_maps(fs_list, ft_list, out_size=224):
    if not isinstance(out_size, tuple):
        out_size = (out_size, out_size)

    a_map_list = []
    for i in range(len(ft_list)):
        fs = fs_list[i]
        ft = ft_list[i]
        a_map = 1 - F.cosine_similarity(fs, ft)
        # mse_map = torch.mean((fs-ft)**2, dim=1)
        # a_map = mse_map
        a_map = torch.unsqueeze(a_map, dim=1)
        a_map = F.interpolate(a_map, size=out_size, mode='bilinear', align_corners=True)
        a_map_list.append(a_map)
    anomaly_map = torch.cat(a_map_list, dim=1).mean(dim=1, keepdim=True)
    return anomaly_map, a_map_list


def min_max_norm(image):
    a_min, a_max = image.min(), image.max()
    return (image - a_min) / (a_max - a_min)

def return_best_thr(y_true, y_score):
    precs, recs, thrs = precision_recall_curve(y_true, y_score)

    f1s = 2 * precs * recs / (precs + recs + 1e-7)
    f1s = f1s[:-1]
    thrs = thrs[~np.isnan(f1s)]
    f1s = f1s[~np.isnan(f1s)]
    best_thr = thrs[np.argmax(f1s)]
    return best_thr

def f1_score_max(y_true, y_score):
    precs, recs, thrs = precision_recall_curve(y_true, y_score)

    f1s = 2 * precs * recs / (precs + recs + 1e-7)
    f1s = f1s[:-1]
    return f1s.max()

def specificity_score(y_true, y_score):
    y_true = np.array(y_true)
    y_score = np.array(y_score)

    TN = (y_true[y_score == 0] == 0).sum()
    N = (y_true == 0).sum()
    return TN / N

def denormalize(img):
    std = np.array([0.229, 0.224, 0.225])
    mean = np.array([0.485, 0.456, 0.406])
    x = (((img.transpose(1, 2, 0) * std) + mean) * 255.).astype(np.uint8)
    return x

def save_imag_ZS(imgs, anomaly_map, gt, prototype_map, save_root, img_path):
    batch_num = imgs.shape[0]
    for i in range(batch_num):
        img_path_list = img_path[i].split('\\')
        class_name, category, idx_name = img_path_list[-4], img_path_list[-2], img_path_list[-1]
        os.makedirs(os.path.join(save_root, class_name, category), exist_ok=True)
        input_frame = denormalize(imgs[i].clone().squeeze(0).cpu().detach().numpy())
        cv2_input = np.array(input_frame, dtype=np.uint8)
        plt.imsave(os.path.join(save_root, class_name, category, fr'{idx_name}_0.png'), cv2_input)
        ano_map = anomaly_map[i].squeeze(0).cpu().detach().numpy()
        plt.imsave(os.path.join(save_root, class_name, category, fr'{idx_name}_1.png'), ano_map, cmap='jet')
        gt_map = gt[i].squeeze(0).cpu().detach().numpy()
        plt.imsave(os.path.join(save_root, class_name, category, fr'{idx_name}_2.png'), gt_map, cmap='gray')
        distance = prototype_map[i].view((28, 28)).cpu().detach().numpy()
        distance = cv2.resize(distance, (392, 392), interpolation=cv2.INTER_AREA)
        plt.imsave(os.path.join(save_root, class_name, category, fr'{idx_name}_3.png'), distance, cmap='jet')
        plt.close()

def evaluation_batch(model, dataloader, device, _class_=None, max_ratio=0, resize_mask=None):
    model.eval()
    gt_list_px = []
    pr_list_px = []
    gt_list_sp = []
    pr_list_sp = []
    gaussian_kernel = get_gaussian_kernel(kernel_size=5, sigma=4).to(device)
    with torch.no_grad():
        for img, gt, label, img_path in tqdm(dataloader, ncols=80):
            img = img.to(device)
            output = model(img)
            en, de = output[0], output[1]
            anomaly_map, _ = cal_anomaly_maps(en, de, img.shape[-1])
            if resize_mask is not None:
                anomaly_map = F.interpolate(anomaly_map, size=resize_mask, mode='bilinear', align_corners=False)
                gt = F.interpolate(gt, size=resize_mask, mode='nearest')
            anomaly_map = gaussian_kernel(anomaly_map)
            gt[gt > 0.5] = 1
            gt[gt <= 0.5] = 0
            # gt = gt.bool()
            if gt.shape[1] > 1:
                gt = torch.max(gt, dim=1, keepdim=True)[0]
            gt_list_px.append(gt)
            pr_list_px.append(anomaly_map)
            gt_list_sp.append(label)
            if max_ratio == 0:
                sp_score = torch.max(anomaly_map.flatten(1), dim=1)[0]
            else:
                anomaly_map = anomaly_map.flatten(1)
                sp_score = torch.sort(anomaly_map, dim=1, descending=True)[0][:, :int(anomaly_map.shape[1] * max_ratio)]
                sp_score = sp_score.mean(dim=1)
            pr_list_sp.append(sp_score)
        gt_list_px = torch.cat(gt_list_px, dim=0)[:, 0].cpu().numpy()
        pr_list_px = torch.cat(pr_list_px, dim=0)[:, 0].cpu().numpy()
        gt_list_sp = torch.cat(gt_list_sp).flatten().cpu().numpy()
        pr_list_sp = torch.cat(pr_list_sp).flatten().cpu().numpy()
        # aupro_px = compute_pro(gt_list_px, pr_list_px)
        gt_list_px, pr_list_px = gt_list_px.ravel(), pr_list_px.ravel()
        auroc_px = roc_auc_score(gt_list_px, pr_list_px)
        auroc_sp = roc_auc_score(gt_list_sp, pr_list_sp)
        ap_px = average_precision_score(gt_list_px, pr_list_px)
        ap_sp = average_precision_score(gt_list_sp, pr_list_sp)
        f1_sp = f1_score_max(gt_list_sp, pr_list_sp)
        f1_px = f1_score_max(gt_list_px, pr_list_px)
    # return [auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, aupro_px]
    return [auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, 0.]

def evaluation_batch_vis_ZS(model, dataloader, device, _class_=None, max_ratio=0, resize_mask=None, save_root=None):
    model.eval()
    gt_list_px = []
    pr_list_px = []
    gt_list_sp = []
    pr_list_sp = []
    gaussian_kernel = get_gaussian_kernel(kernel_size=5, sigma=4).to(device)
    with torch.no_grad():
        for img, gt, label, img_path in tqdm(dataloader, ncols=80):
            img = img.to(device)
            _ = model(img)
            anomaly_map = model.distance
            side = int(model.distance.shape[1]**0.5)
            anomaly_map = anomaly_map.reshape([anomaly_map.shape[0], side, side]).contiguous()
            anomaly_map = torch.unsqueeze(anomaly_map, dim=1)
            anomaly_map = F.interpolate(anomaly_map, size=img.shape[-1], mode='bilinear', align_corners=True)
            if resize_mask is not None:
                anomaly_map = F.interpolate(anomaly_map, size=resize_mask, mode='bilinear', align_corners=False)
                gt = F.interpolate(gt, size=resize_mask, mode='nearest')

            anomaly_map = gaussian_kernel(anomaly_map)

            save_imag_ZS(img, anomaly_map, gt, model.distance, save_root, img_path)

            gt[gt > 0.5] = 1
            gt[gt <= 0.5] = 0
            # gt = gt.bool()
            if gt.shape[1] > 1:
                gt = torch.max(gt, dim=1, keepdim=True)[0]
            gt_list_px.append(gt)
            pr_list_px.append(anomaly_map)
            gt_list_sp.append(label)

            if max_ratio == 0:
                sp_score = torch.max(anomaly_map.flatten(1), dim=1)[0]
            else:
                anomaly_map = anomaly_map.flatten(1)
                sp_score = torch.sort(anomaly_map, dim=1, descending=True)[0][:, :int(anomaly_map.shape[1] * max_ratio)]
                sp_score = sp_score.mean(dim=1)
            pr_list_sp.append(sp_score)

        gt_list_px = torch.cat(gt_list_px, dim=0)[:, 0].cpu().numpy()
        pr_list_px = torch.cat(pr_list_px, dim=0)[:, 0].cpu().numpy()
        gt_list_sp = torch.cat(gt_list_sp).flatten().cpu().numpy()
        pr_list_sp = torch.cat(pr_list_sp).flatten().cpu().numpy()

        # aupro_px = compute_pro(gt_list_px, pr_list_px)

        gt_list_px, pr_list_px = gt_list_px.ravel(), pr_list_px.ravel()

        auroc_px = roc_auc_score(gt_list_px, pr_list_px)
        auroc_sp = roc_auc_score(gt_list_sp, pr_list_sp)
        ap_px = average_precision_score(gt_list_px, pr_list_px)
        ap_sp = average_precision_score(gt_list_sp, pr_list_sp)

        f1_sp = f1_score_max(gt_list_sp, pr_list_sp)
        f1_px = f1_score_max(gt_list_px, pr_list_px)

    # return [auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, aupro_px]
    return [auroc_sp, ap_sp, f1_sp, auroc_px, ap_px, f1_px, 0.]

def compute_pro(masks: ndarray, amaps: ndarray, num_th: int = 200) -> None:
    """Compute the area under the curve of per-region overlaping (PRO) and 0 to 0.3 FPR
    Args:
        category (str): Category of product
        masks (ndarray): All binary masks in test. masks.shape -> (num_test_data, h, w)
        amaps (ndarray): All anomaly maps in test. amaps.shape -> (num_test_data, h, w)
        num_th (int, optional): Number of thresholds
    """

    assert isinstance(amaps, ndarray), "type(amaps) must be ndarray"
    assert isinstance(masks, ndarray), "type(masks) must be ndarray"
    assert amaps.ndim == 3, "amaps.ndim must be 3 (num_test_data, h, w)"
    assert masks.ndim == 3, "masks.ndim must be 3 (num_test_data, h, w)"
    assert amaps.shape == masks.shape, "amaps.shape and masks.shape must be same"
    assert set(masks.flatten()) == {0, 1}, "set(masks.flatten()) must be {0, 1}"
    assert isinstance(num_th, int), "type(num_th) must be int"

    df = pd.DataFrame([], columns=["pro", "fpr", "threshold"])
    binary_amaps = np.zeros_like(amaps, dtype=np.bool)

    min_th = amaps.min()
    max_th = amaps.max()
    delta = (max_th - min_th) / num_th

    for th in np.arange(min_th, max_th, delta):
        binary_amaps[amaps <= th] = 0
        binary_amaps[amaps > th] = 1

        pros = []
        for binary_amap, mask in zip(binary_amaps, masks):
            for region in measure.regionprops(measure.label(mask)):
                axes0_ids = region.coords[:, 0]
                axes1_ids = region.coords[:, 1]
                tp_pixels = binary_amap[axes0_ids, axes1_ids].sum()
                pros.append(tp_pixels / region.area)

        inverse_masks = 1 - masks
        fp_pixels = np.logical_and(inverse_masks, binary_amaps).sum()
        fpr = fp_pixels / inverse_masks.sum()

        df = df.append({"pro": mean(pros), "fpr": fpr, "threshold": th}, ignore_index=True)

    # Normalize FPR from 0 ~ 1 to 0 ~ 0.3
    df = df[df["fpr"] < 0.3]
    df["fpr"] = df["fpr"] / df["fpr"].max()

    pro_auc = auc(df["fpr"], df["pro"])
    return pro_auc

def get_gaussian_kernel(kernel_size=3, sigma=2, channels=1):
    # Create a x, y coordinate grid of shape (kernel_size, kernel_size, 2)
    x_coord = torch.arange(kernel_size)
    x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size)
    y_grid = x_grid.t()
    xy_grid = torch.stack([x_grid, y_grid], dim=-1).float()

    mean = (kernel_size - 1) / 2.
    variance = sigma ** 2.

    # Calculate the 2-dimensional gaussian kernel which is
    # the product of two gaussian distributions for two different
    # variables (in this case called x and y)
    gaussian_kernel = (1. / (2. * math.pi * variance)) * \
                      torch.exp(
                          -torch.sum((xy_grid - mean) ** 2., dim=-1) / \
                          (2 * variance)
                      )

    # Make sure sum of values in gaussian kernel equals 1.
    gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)

    # Reshape to 2d depthwise convolutional weight
    gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
    gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1)

    gaussian_filter = torch.nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=kernel_size,
                                      groups=channels,
                                      bias=False, padding=kernel_size // 2)

    gaussian_filter.weight.data = gaussian_kernel
    gaussian_filter.weight.requires_grad = False

    return gaussian_filter

from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.lr_scheduler import ReduceLROnPlateau

class WarmCosineScheduler(_LRScheduler):

    def __init__(self, optimizer, base_value, final_value, total_iters, warmup_iters=0, start_warmup_value=0, ):
        self.final_value = final_value
        self.total_iters = total_iters
        warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)

        iters = np.arange(total_iters - warmup_iters)
        schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
        self.schedule = np.concatenate((warmup_schedule, schedule))

        super(WarmCosineScheduler, self).__init__(optimizer)

    def get_lr(self):
        if self.last_epoch >= self.total_iters:
            return [self.final_value for base_lr in self.base_lrs]
        else:
            return [self.schedule[self.last_epoch] for base_lr in self.base_lrs]