Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| def estimate_transformer_stats(batch_size, seq_len, num_layers, hidden_dim, vocab_size, show_breakdown): | |
| B = batch_size | |
| S = seq_len | |
| L = num_layers | |
| D = hidden_dim | |
| V = vocab_size | |
| # --- Parameters --- | |
| num_params = L * 12 * (D ** 2) + D * V | |
| # --- FLOPs --- (using 2 * m * n * p per matmul) | |
| attn_proj_flops = 2 * 3 * S * D * D | |
| attn_score_flops = 2 * S * D * S | |
| attn_out_proj_flops = 2 * S * D * D | |
| ffn_flops = 2 * 2 * S * D * 4 * D | |
| logit_flops = 2 * S * D * V / L | |
| total_layer_flops = attn_proj_flops + attn_score_flops + attn_out_proj_flops + ffn_flops + logit_flops | |
| total_flops = 6 * B * L * total_layer_flops | |
| output_lines = [ | |
| f"Parameters: P = 12 * L * D^2 + D * V", | |
| f" = 12 * {L} * {D}^2 + {D} * {V} = {num_params:.2e}", | |
| f"", | |
| f"FLOPs per layer (per sequence):", | |
| f" Attention Projections (QKV): 2 * 3 * S * D^2 = 2 * 3 * {S} * {D}^2 = {attn_proj_flops:.2e}", | |
| f" Attention Scores (QKᵀ): 2 * S * D * S = 2 * {S} * {D} * {S} = {attn_score_flops:.2e}", | |
| f" Attention Output Proj: 2 * S * D^2 = 2 * {S} * {D}^2 = {attn_out_proj_flops:.2e}", | |
| f" Feedforward Network: 2 * 2 * S * D * 4D = 2*2*{S}*{D}*{4*D} = {ffn_flops:.2e}", | |
| f" Logits: 2 * S * D * V / L = 2*{S}*{D}*{V} / {L} = {logit_flops:.2e}", | |
| f"", | |
| f"Layer Total FLOPs = {total_layer_flops:.2e}", | |
| f"", | |
| f"Total Training FLOPs = 6 * B * L * Layer_FLOPs", | |
| f" = 6 * {B} * {L} * {total_layer_flops:.2e} = {total_flops:.2e}" | |
| ] | |
| if show_breakdown: | |
| total_all = attn_proj_flops + attn_score_flops + attn_out_proj_flops + ffn_flops + logit_flops | |
| output_lines.append("\nComponent-wise totals across training batch:") | |
| output_lines.append(f" - QKV Projections: {attn_proj_flops * B * L:.2e} ({100 * attn_proj_flops / total_all:.1f}%)") | |
| output_lines.append(f" - Attention Scores: {attn_score_flops * B * L:.2e} ({100 * attn_score_flops / total_all:.1f}%)") | |
| output_lines.append(f" - Attention Output: {attn_out_proj_flops * B * L:.2e} ({100 * attn_out_proj_flops / total_all:.1f}%)") | |
| output_lines.append(f" - FFN: {ffn_flops * B * L:.2e} ({100 * ffn_flops / total_all:.1f}%)") | |
| output_lines.append(f" - Logits: {logit_flops * B * L:.2e} ({100 * logit_flops / total_all:.1f}%)") | |
| return "\n".join(output_lines) | |
| iface = gr.Interface( | |
| fn=estimate_transformer_stats, | |
| inputs=[ | |
| gr.Number(label="Batch Size", value=1), | |
| gr.Number(label="Sequence Length", value=2048), | |
| gr.Number(label="Number of Layers", value=24), | |
| gr.Number(label="Hidden Size (d_model)", value=2048), | |
| gr.Number(label="Vocabulary Size", value=50272), | |
| gr.Checkbox(label="Show FLOPs Breakdown", value=True), | |
| ], | |
| outputs=gr.Textbox(label="Estimates"), | |
| title="Transformer Parameter and FLOPs Estimator", | |
| description="Estimates parameter count and training FLOPs for decoder-only Transformers (like OPT/GPT). Shows formulas and per-component breakdown." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |