File size: 15,483 Bytes
45b9636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import gradio as gr
from qa_engine import load_index, build_chain
from clipper import clip
from index_builder import build_index
from logging_config import logger
import os
import json
import time
import subprocess
# Global variables
store = None
qa_chain = None
SOURCE_AUDIO = None
model_name = "phi3" # Default to phi3 which is local
index_loaded = False
# --- load at startup (may not exist on first run) ---
try:
if os.path.exists("data"):
store, segments = load_index("data")
if store:
qa_chain = build_chain(store, model_name)
SOURCE_AUDIO = "downloads/audio.mp3"
index_loaded = True
logger.info("Successfully loaded existing index")
except Exception as e:
logger.warning("No existing index found or error loading index: %s. Upload a media file to build one.", str(e))
store = qa_chain = None
SOURCE_AUDIO = None
index_loaded = False
def _fmt(sec: float) -> str:
h = int(sec // 3600)
m = int((sec % 3600) // 60)
s = int(sec % 60)
return f"{h:02d}:{m:02d}:{s:02d}"
def update_progress(progress: int, message: str):
"""Helper to update progress bar"""
return f"<script>updateProgress({progress}, '{message}')</script>"
def handle(question: str):
global qa_chain, store, SOURCE_AUDIO
logger.info(f"Handling question: {question}")
if not store:
msg = "β οΈ No vector store found. Please upload a media file first."
logger.warning(msg)
return None, msg, update_progress(0, "Waiting for input...")
if not qa_chain:
msg = "β οΈ QA chain not initialized. Please select a model and try again."
logger.warning(msg)
return None, msg, update_progress(0, "Waiting for input...")
if not question.strip():
msg = "β οΈ Please enter a question."
logger.warning(msg)
return None, msg, update_progress(0, "Waiting for input...")
try:
# Update progress
logger.info("Processing question...")
yield None, "Processing your question...", update_progress(20, "Analyzing question...")
# Query the QA chain
logger.info(f"Querying QA chain with question: {question}")
result = qa_chain({"question": question}, return_only_outputs=True)
logger.info(f"QA chain result: {result}")
# Extract the answer and source documents
answer = result.get("answer", "No answer found.")
source_docs = result.get("source_documents", [])
logger.info(f"Found {len(source_docs)} source documents")
if not source_docs:
msg = "βΉοΈ No relevant content found in the audio."
logger.info(msg)
yield None, msg, update_progress(100, "No results found")
return
# Get the first document's metadata for timestamp
metadata = source_docs[0].metadata
logger.info(f"Source document metadata: {metadata}")
start_time = float(metadata.get("start", 0))
end_time = start_time + 30 # 30-second clip
# Format timestamp
start_str = f"{int(start_time // 60)}:{int(start_time % 60):02d}"
end_str = f"{int(end_time // 60)}:{int(end_time % 60):02d}"
logger.info(f"Extracting clip from {start_str} to {end_str}...")
yield None, f"Extracting clip from {start_str} to {end_str}...", update_progress(75, "Extracting audio...")
try:
logger.info(f"Calling clip() with source: {SOURCE_AUDIO}, start: {start_time}, end: {end_time}")
clip_path = clip(SOURCE_AUDIO, start_time, end_time)
logger.info(f"Clip created at: {clip_path}")
if not clip_path or not os.path.exists(clip_path):
error_msg = f"Failed to create clip at {clip_path}"
logger.error(error_msg)
raise FileNotFoundError(error_msg)
success_msg = f"π§ Clip from {start_str} to {end_str}"
logger.info(success_msg)
yield clip_path, success_msg, update_progress(100, "Done!")
except Exception as e:
error_msg = f"β Error creating audio clip: {str(e)}"
logger.error(error_msg, exc_info=True)
yield None, error_msg, update_progress(0, "Error creating clip")
except Exception as e:
error_msg = f"β Error processing question: {str(e)}"
logger.error(error_msg, exc_info=True)
yield None, error_msg, update_progress(0, "Error occurred")
def upload_media(file, progress=gr.Progress()):
"""Build index from uploaded media and refresh QA chain."""
global SOURCE_AUDIO, qa_chain, store, model_name
if file is None:
logger.error("No file was uploaded")
return "β Error: No file was uploaded."
try:
progress(0.1, desc="Starting upload...")
# Get the actual file path
file_path = file.name if hasattr(file, 'name') else str(file)
logger.info(f"Processing uploaded file: {file_path}")
# Ensure the file exists
if not os.path.exists(file_path):
error_msg = f"File not found at path: {file_path}"
logger.error(error_msg)
return f"β Error: {error_msg}"
# Convert to MP3 if needed
if not file_path.lower().endswith('.mp3'):
progress(0.2, desc="Converting to MP3 format...")
logger.info("Converting file to MP3 format...")
base_name = os.path.splitext(file_path)[0]
audio_path = f"{base_name}.mp3"
try:
# Use ffmpeg to convert to MP3
cmd = [
'ffmpeg',
'-i', file_path, # Input file
'-q:a', '0', # Best quality
'-map', 'a', # Only audio
'-y', # Overwrite output file if it exists
audio_path # Output file
]
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode != 0:
error_msg = f"Failed to convert file to MP3: {result.stderr}"
logger.error(error_msg)
return f"β Error: {error_msg}"
file_path = audio_path
logger.info(f"Successfully converted to MP3: {file_path}")
except Exception as e:
error_msg = f"Error during MP3 conversion: {str(e)}"
logger.error(error_msg, exc_info=True)
return f"β {error_msg}"
# Set the global audio source
SOURCE_AUDIO = file_path
# Create data directory if it doesn't exist
data_dir = "data"
os.makedirs(data_dir, exist_ok=True)
# Build the index
progress(0.4, desc="Transcribing audio with Whisper (this may take a few minutes)...")
logger.info("Starting transcription and index building...")
try:
# Build the index from the audio file
store = build_index(file_path, data_dir)
if not store:
error_msg = "Failed to build index - no documents were processed"
logger.error(error_msg)
return f"β {error_msg}"
# Initialize QA chain with the model and store
progress(0.9, desc="Initializing QA system...")
logger.info("Initializing QA chain...")
qa_chain = build_chain(store, model_name)
if not qa_chain:
error_msg = "Failed to initialize QA chain"
logger.error(error_msg)
return f"β {error_msg}"
progress(1.0, desc="Ready!")
success_msg = f"β
Ready! Successfully processed {os.path.basename(file_path)}"
logger.info(success_msg)
return success_msg
except Exception as e:
error_msg = f"Error during index building: {str(e)}"
logger.error(error_msg, exc_info=True)
return f"β {error_msg}"
except Exception as e:
error_msg = f"Unexpected error: {str(e)}"
logger.error(error_msg, exc_info=True)
return f"β {error_msg}"
def tail_log(n: int = 200):
"""Return last n log entries pretty-printed JSON."""
path = os.path.join(os.path.dirname(__file__), "langchain_debug.jsonl")
if not os.path.exists(path):
return "{}" # empty JSON
with open(path, "r", encoding="utf-8") as f:
raw = f.readlines()[-n:]
objs = []
for ln in raw:
try:
objs.append(json.loads(ln))
except json.JSONDecodeError:
continue
return "\n\n".join(json.dumps(o, indent=2) for o in objs)
with gr.Blocks() as demo:
# Enable queue for async operations and generators
demo.queue()
with gr.Tab("Ask"):
gr.Markdown("# ClipQuery: Upload any audio/video and ask questions about it. ")
gr.Markdown("### The clip will be extracted from the point in the media where the answer most likely occurs.")
with gr.Row():
with gr.Column(scale=3):
# Model selection
model_dd = gr.Dropdown(
["flan-t5-base (HuggingFace)", "phi3 (Local - requires Ollama)", "tinyllama (Local - requires Ollama)"],
label="Select Model",
value="phi3 (Local - requires Ollama)"
)
with gr.Column(scale=2):
# Hugging Face Token input (initially hidden)
hf_token = gr.Textbox(
label="Hugging Face Token (required for flan-t5-base)",
type="password",
visible=False,
placeholder="Enter your Hugging Face token..."
)
def toggle_token_visibility(model_name):
return gr.update(visible="flan-t5-base" in model_name)
model_dd.change(
fn=toggle_token_visibility,
inputs=model_dd,
outputs=hf_token
)
# Initial token visibility check
toggle_token_visibility(model_dd.value)
uploader = gr.File(label="Upload audio/video", file_types=["audio", "video"])
status = gr.Markdown()
inp = gr.Textbox(label="Ask a question")
out_audio = gr.Audio()
ts_label = gr.Markdown()
# Progress tracker
with gr.Row():
progress = gr.HTML("""
<div style='width: 100%; margin: 10px 0;'>
<div style='display: flex; justify-content: space-between; margin-bottom: 5px;'>
<span id='status'>Ready</span>
<span id='progress'>0%</span>
</div>
<div style='height: 20px; background: #f0f0f0; border-radius: 10px; overflow: hidden;'>
<div id='progress-bar' style='height: 100%; width: 0%; background: #4CAF50; transition: width 0.3s;'></div>
</div>
</div>
""")
# JavaScript for progress updates
js = """
function updateProgress(progress, message) {
const bar = document.getElementById('progress-bar');
const percent = document.getElementById('progress');
const status = document.getElementById('status');
// Ensure progress is a number and has a default
const progressValue = Number(progress) || 0;
bar.style.width = progressValue + '%';
percent.textContent = progressValue + '%';
status.textContent = message || 'Processing...';
if (progressValue >= 100) {
bar.style.background = '#4CAF50';
status.textContent = 'Done!';
} else if (progressValue >= 75) {
bar.style.background = '#2196F3';
} else if (progressValue >= 50) {
bar.style.background = '#FFC107';
} else if (progressValue >= 25) {
bar.style.background = '#FF9800';
} else {
bar.style.background = '#f44336';
}
}
// Initialize on load
document.addEventListener('DOMContentLoaded', function() {
updateProgress(0, 'Ready');
});
"""
demo.load(None, None, None, _js=js)
def _on_model_change(label, token):
global model_name, qa_chain, store
name = label.split()[0] # drop suffix
if name == model_name:
return "" # No change needed
# Check if this is a local model that needs Ollama
if name in ('phi3', 'tinyllama'):
try:
import requests
response = requests.get('http://localhost:11434', timeout=5)
if response.status_code != 200:
raise ConnectionError("Ollama server not running. Please start it first.")
except Exception as e:
return f"β Error: {str(e)}. Please make sure Ollama is running."
if store is None and name != "flan-t5-base":
return "β οΈ Please upload a media file before changing models."
try:
if name == "flan-t5-base" and not token:
return "β οΈ Please enter your Hugging Face token to use flan-t5-base. Get one at https://huggingface.co/settings/tokens"
# Only pass the token if using flan-t5-base
hf_token = token if name == "flan-t5-base" else None
qa_chain = build_chain(store, name, hf_token)
model_name = name # Update the current model name
return f"β
Switched to {label}"
except Exception as e:
return f"β Failed to switch model: {str(e)}"
model_dd.change(
fn=_on_model_change,
inputs=[model_dd, hf_token],
outputs=status
)
uploader.change(
fn=upload_media,
inputs=uploader,
outputs=status,
api_name="upload_media"
)
inp.submit(
fn=handle,
inputs=inp,
outputs=[out_audio, ts_label, progress],
show_progress=False
)
with gr.Tab("Debug Log"):
log_box = gr.Textbox(label="Application Logs", lines=25, max_lines=25, interactive=False)
refresh_btn = gr.Button("Refresh Logs")
def refresh_logs():
from logging_config import get_logs
logs = get_logs()
return f"""
===== LATEST LOGS =====
{logs[-5000:] if len(logs) > 5000 else logs}
======================
"""
refresh_btn.click(refresh_logs, None, log_box)
demo.load(refresh_logs, None, log_box, every=5)
if __name__ == "__main__":
demo.launch(share=True, show_api=False)
|