File size: 7,725 Bytes
ee5e0d0
26930f6
 
 
 
 
 
 
 
ee5e0d0
 
45b9636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fa562
45b9636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fa562
45b9636
98fa562
26930f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
title: ClipQuery
emoji: πŸ”
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: 5.41.0
app_file: app.py
pinned: false
---

# ClipQuery – Ask Questions of Any Podcast / Video and Hear the Answer

ClipQuery turns *any* local audio or video file into a searchable, conversational experience.
It automatically transcribes the media, indexes each sentence with embeddings, and lets you
ask natural-language questions.  It returns:

1. A **30-second audio clip** from the exact place in the media where the answer occurs.
2. The **timestamp** of the clip.
3. A live **LangChain debug log** so you can inspect what happened behind the scenes.

---
## How It Works

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   transcribe & segment   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  audio / mp4  β”‚ ───────────────────────▢ β”‚  transcripts  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        β”‚                                           β”‚
        β”‚ build embeddings (SBERT)                  β”‚  metadata: {start, end}
        β–Ό                                           β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    store vectors     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ HuggingFace     │────────────────────▢│ FAISS VectorStore  β”‚
β”‚ Sentence-Transformerβ”‚                 β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                             β–²
                                                β”‚ retrieve top-k
                                                β–Ό
                                         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                                         β”‚ ChatOllama (phi3)  β”‚
                                         β”‚  RetrievalQA chain β”‚
                                         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

1. **Transcription** – `index_builder.py` uses `faster-whisper` to generate
   word-level timestamps, saved as `segments.json`.
2. **Embedding + Index** – Sentence-Transformer (miniLM) embeddings are
   stored in a **FAISS** index (`data/*`).
3. **Question Answering** – A local LLM (Ollama `phi3`) is wrapped in
   `RetrievalQAWithSourcesChain` to pull the most relevant transcript
   chunks and generate an answer.
4. **Clip Extraction** – `clipper.py` calls `ffmpeg` to cut a 30 s MP3
   between the `start` and `end` timestamps (extended to 30 s if shorter).
5. **Debug Logging** – A custom `JSONLCallbackHandler` dumps every
   LangChain event to `langchain_debug.jsonl`; the Gradio UI streams it
   live in the **Debug Log** tab.

---
## Installation

### Prerequisites
- Python 3.9+ (3.10 recommended)
- FFmpeg (for audio processing)
- For GPU acceleration: CUDA-compatible GPU (optional but recommended)

### Quick Start (CPU/Spaces Mode)
```bash
# 1. Clone and set up
python -m venv .venv && source .venv/bin/activate  # Linux/macOS
# OR on Windows: .venv\Scripts\activate

pip install -r requirements.txt

# 2. Run the app (uses flan-t5-base by default)
python app.py
```

### Local GPU Setup (Optional)
For better performance with local models:

1. **Install Ollama**
   ```bash
   # macOS/Linux
   curl -fsSL https://ollama.com/install.sh | sh
   
   # Windows: Download from https://ollama.com/download
   ```

2. **Download Models** (pick one)
   ```bash
   # Small & fast (4GB VRAM+)
   ollama pull phi3
   
   # Larger & more capable (8GB VRAM+)
   ollama pull mistral
   
   # Start Ollama in the background
   ollama serve &
   ```

3. **Run with Local Model**
   ```bash
   # The app will automatically detect Ollama if running
   python app.py
   ```

### FFmpeg Setup
```bash
# macOS
brew install ffmpeg

# Ubuntu/Debian
sudo apt update && sudo apt install ffmpeg

# Windows (with Chocolatey)
choco install ffmpeg
```

### FFmpeg

`clipper.py` requires FFmpeg.  On macOS:
```bash
brew install ffmpeg
```

---
## Quick Start

1. **Launch the App**
   ```bash
   python app.py
   ```
   This starts a local web server at http://127.0.0.1:7860

2. **First Run**
   - The first time you run with a new model, it will download the necessary files (1-5GB for `flan-t5-base`).
   - Subsequent starts will be faster as files are cached.

3. **Using the App**
   1. **Upload** any audio/video file (mp3, mp4, etc.)
   2. Select a model:
      - For CPU/Spaces: `flan-t5-base`
      - For local GPU: `phi3` or `tinyllama` (requires Ollama)
   3. Ask a question in the **Ask** tab
   4. The app will:
      - Transcribe the media (first time only)
      - Find the most relevant 30-second clip
      - Play the audio and show the timestamp

4. **Debugging**
   - Check the terminal for transcription progress
   - View the **Debug Log** tab for detailed LLM interactions
   - Logs are saved to `langchain_debug.jsonl`

---
## Project Layout

```
β”œβ”€β”€ app.py              # Gradio UI and orchestration
β”œβ”€β”€ clipper.py          # ffmpeg clip extraction helper
β”œβ”€β”€ index_builder.py    # transcription + FAISS index builder
β”œβ”€β”€ qa_engine.py        # load index, build RetrievalQA chain, JSONL logging
β”œβ”€β”€ logging_config.py   # basic logger
β”œβ”€β”€ requirements.txt
└── README.md
```

Generated artifacts:

* `downloads/audio.mp3`         – copy of uploaded audio
* `data/faiss_index*`            – FAISS vector store
* `data/segments.json`          – transcript chunks with timestamps
* `langchain_debug.jsonl`       – streaming debug log

---
## Customising

* **Change minimum clip length** – Modify `MIN_CLIP_SEC` logic in
  `app.py` (currently hard-coded to 30 s).
* **Use a different LLM** – Change the `ChatOllama(model=...)` argument
  in `qa_engine.py` (any Ollama-served model works).
* **Prompt template** – Supply `chain_type_kwargs={"prompt": custom_prompt}`
  when calling `RetrievalQAWithSourcesChain.from_chain_type`.
* **Rotate / clean logs** – Delete `langchain_debug.jsonl`; it will be
  recreated on the next query.

---
## Troubleshooting

### Common Issues

| Issue | Solution |
|-------|----------|
| **Ollama not detected** | Run `ollama serve` in a separate terminal |
| **CUDA Out of Memory** | Use a smaller model (`phi3` instead of `mistral`) or reduce batch size |
| **FFmpeg not found** | Install FFmpeg and ensure it's in your PATH |
| **Slow performance on CPU** | Use `phi3` or `tinyllama` with Ollama for GPU acceleration |
| **Model download errors** | Check internet connection and disk space |

### Advanced
- **Reducing VRAM Usage**:
  ```python
  # In app.py, reduce context length
  llm = ChatOllama(model="phi3", num_ctx=2048)  # default is 4096
  ```

- **Faster Transcriptions**:
  ```bash
  # Pre-convert to 16kHz mono WAV
  ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le input_16k.wav
  ```

- **Debug Logs**:
  - Check `langchain_debug.jsonl` for detailed traces
  - Set `LOG_LEVEL=DEBUG` for verbose output

## Local Development

### Environment Variables
```bash
# For HuggingFace models (required for Spaces)
export HUGGINGFACEHUB_API_TOKEN="your_token_here"

# For debugging
export LOG_LEVEL=DEBUG
```

### Running Tests
```bash
# Install test dependencies
pip install pytest pytest-mock

# Run tests
pytest tests/
```

### Building for Production
```bash
# Create a standalone executable (using PyInstaller)
pip install pyinstaller
pyinstaller --onefile app.py
```

---
## License

MIT – do what you want, no warranty.