File size: 19,232 Bytes
0d6e478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# app.py
"""
Gradio word-level attention visualizer with:
- Paragraph-style wrapping and semi-transparent backgrounds per word
- Proper detokenization to words (regex)
- Trailing EOS/PAD special tokens removed (no <|endoftext|> shown)
- Selection ONLY from generated words; prompt is hidden from selector
- Viewer shows attention over BOTH prompt and generated words (context)
"""

import re
from typing import List, Tuple

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np

# =========================
# Config
# =========================
ALLOWED_MODELS = [
    # ---- GPT-2 family
    "gpt2", "distilgpt2", "gpt2-medium", "gpt2-large", "gpt2-xl",
    # ---- EleutherAI (Neo/J/NeoX/Pythia)
    "EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B",
    "EleutherAI/gpt-j-6B", "EleutherAI/gpt-neox-20b",
    "EleutherAI/pythia-70m", "EleutherAI/pythia-160m", "EleutherAI/pythia-410m",
    "EleutherAI/pythia-1b", "EleutherAI/pythia-1.4b", "EleutherAI/pythia-2.8b",
    "EleutherAI/pythia-6.9b", "EleutherAI/pythia-12b",
    # ---- Meta OPT
    "facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b",
    "facebook/opt-6.7b", "facebook/opt-13b", "facebook/opt-30b",
    # ---- Mistral
    "mistralai/Mistral-7B-v0.1", "mistralai/Mistral-7B-v0.3", "mistralai/Mistral-7B-Instruct-v0.2",
    # ---- TinyLlama / OpenLLaMA
    "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
    "openlm-research/open_llama_3b", "openlm-research/open_llama_7b",
    # ---- Microsoft Phi
    "microsoft/phi-1", "microsoft/phi-1_5", "microsoft/phi-2",
    # ---- Qwen
    "Qwen/Qwen1.5-0.5B", "Qwen/Qwen1.5-1.8B", "Qwen/Qwen1.5-4B", "Qwen/Qwen1.5-7B",
    "Qwen/Qwen2-1.5B", "Qwen/Qwen2-7B",
    # ---- MPT
    "mosaicml/mpt-7b", "mosaicml/mpt-7b-instruct",
    # ---- Falcon
    "tiiuae/falcon-7b", "tiiuae/falcon-7b-instruct", "tiiuae/falcon-40b",
    # ---- Cerebras GPT
    "cerebras/Cerebras-GPT-111M", "cerebras/Cerebras-GPT-256M",
    "cerebras/Cerebras-GPT-590M", "cerebras/Cerebras-GPT-1.3B", "cerebras/Cerebras-GPT-2.7B",
]

device = "cuda" if torch.cuda.is_available() else "cpu"
model = None
tokenizer = None

# Word regex (words + punctuation)
WORD_RE = re.compile(r"\w+(?:'\w+)?|[^\w\s]")

# =========================
# Model loading
# =========================
def _safe_set_attn_impl(m):
    try:
        m.config._attn_implementation = "eager"
    except Exception:
        pass

def load_model(model_name: str):
    """Load tokenizer+model globally."""
    global model, tokenizer
    try:
        del model
        torch.cuda.empty_cache()
    except Exception:
        pass

    tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
    # Ensure pad token id
    if tokenizer.pad_token_id is None:
        if tokenizer.eos_token_id is not None:
            tokenizer.pad_token_id = tokenizer.eos_token_id
        else:
            tokenizer.add_special_tokens({"pad_token": "<|pad|>"})

    model = AutoModelForCausalLM.from_pretrained(model_name)
    _safe_set_attn_impl(model)
    if hasattr(model, "resize_token_embeddings") and tokenizer.pad_token_id >= model.get_input_embeddings().num_embeddings:
        model.resize_token_embeddings(len(tokenizer))
    model.eval()
    model.to(device)

def model_heads_layers():
    try:
        L = int(getattr(model.config, "num_hidden_layers", 12))
    except Exception:
        L = 12
    try:
        H = int(getattr(model.config, "num_attention_heads", 12))
    except Exception:
        H = 12
    return max(1, L), max(1, H)

# =========================
# Attention utils
# =========================
def get_attention_for_token_layer(
    attentions,
    token_index,
    layer_index,
    batch_index=0,
    head_index=0,
    mean_across_layers=True,
    mean_across_heads=True,
):
    """
    attentions: tuple length = #generated tokens
      attentions[t] -> tuple of len = num_layers, each: (batch, heads, q, k)
    """
    token_attention = attentions[token_index]

    if mean_across_layers:
        layer_attention = torch.stack(token_attention).mean(dim=0)  # (batch, heads, q, k)
    else:
        layer_attention = token_attention[int(layer_index)]          # (batch, heads, q, k)

    batch_attention = layer_attention[int(batch_index)]              # (heads, q, k)

    if mean_across_heads:
        head_attention = batch_attention.mean(dim=0)                 # (q, k)
    else:
        head_attention = batch_attention[int(head_index)]            # (q, k)

    return head_attention.squeeze(0)  # q==1 -> (k,)

# =========================
# Tokens -> words mapping
# =========================
def _words_and_map_from_tokens_simple(token_ids: List[int]) -> Tuple[List[str], List[int]]:
    """
    Given token_ids (in-order), return:
      - words: regex-split words from detokenized text
      - word2tok: indices (relative to `token_ids`) of the LAST token composing each word
    """
    if not token_ids:
        return [], []
    toks = tokenizer.convert_ids_to_tokens(token_ids)
    detok = tokenizer.convert_tokens_to_string(toks)
    words = WORD_RE.findall(detok)

    enc = tokenizer(detok, return_offsets_mapping=True, add_special_tokens=False)
    tok_offsets = enc["offset_mapping"]
    n = min(len(tok_offsets), len(token_ids))
    spans = [m.span() for m in re.finditer(WORD_RE, detok)]

    word2tok: List[int] = []
    t = 0
    for (ws, we) in spans:
        last_t = None
        while t < n:
            ts, te = tok_offsets[t]
            if not (te <= ws or ts >= we):
                last_t = t
                t += 1
            else:
                if te <= ws:
                    t += 1
                else:
                    break
        if last_t is None:
            last_t = max(0, min(n - 1, t - 1))
        word2tok.append(int(last_t))
    return words, word2tok

def _strip_trailing_special(ids: List[int]) -> List[int]:
    """Remove trailing EOS/PAD/other special tokens from the generated ids."""
    specials = set(getattr(tokenizer, "all_special_ids", []) or [])
    j = len(ids)
    while j > 0 and ids[j - 1] in specials:
        j -= 1
    return ids[:j]

def _words_and_maps_for_full_and_gen(all_token_ids: List[int], prompt_len: int):
    """
    Returns:
      words_all: list[str]  (prompt + generated, in order)
      abs_ends_all: list[int] absolute last-token index per word (over all_token_ids)
      words_gen: list[str]  (generated only)
      abs_ends_gen: list[int] absolute last-token index per generated word
    """
    if not all_token_ids:
        return [], [], [], []

    prompt_ids = all_token_ids[:prompt_len]
    gen_ids = _strip_trailing_special(all_token_ids[prompt_len:])

    p_words, p_map_rel = _words_and_map_from_tokens_simple(prompt_ids)
    g_words, g_map_rel = _words_and_map_from_tokens_simple(gen_ids)

    p_abs = [int(i) for i in p_map_rel]  # prompt starts at absolute 0
    g_abs = [prompt_len + int(i) for i in g_map_rel]

    words_all = p_words + g_words
    abs_ends_all = p_abs + g_abs

    return words_all, abs_ends_all, g_words, g_abs

# =========================
# Visualization (WORD-LEVEL)
# =========================
def generate_word_visualization(words_all: List[str],
                                abs_word_ends_all: List[int],
                                attention_values: np.ndarray,
                                selected_token_abs_idx: int) -> str:
    """
    Paragraph-style visualization over words (prompt + generated).
    For each word, aggregate attention over its composing tokens (sum),
    normalize across words, and render opacity as a semi-transparent background.
    """
    if not words_all or attention_values is None or len(attention_values) == 0:
        return (
            "<div style='width:100%;'>"
            "  <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
            "    <div style='color:#ddd;'>No attention values.</div>"
            "  </div>"
            "</div>"
        )

    # Build word starts from ends (inclusive token indices)
    starts = []
    for i, end in enumerate(abs_word_ends_all):
        if i == 0:
            starts.append(0)
        else:
            starts.append(min(abs_word_ends_all[i - 1] + 1, end))

    # Sum attention per word
    word_scores = []
    for i, end in enumerate(abs_word_ends_all):
        start = starts[i]
        if start > end:
            start = end
        s = max(0, min(start, len(attention_values) - 1))
        e = max(0, min(end,   len(attention_values) - 1))
        if e < s:
            s, e = e, s
        word_scores.append(float(attention_values[s:e + 1].sum()))

    max_attn = max(0.1, float(max(word_scores)) if word_scores else 0.0)

    # Which word holds the selected token?
    selected_word_idx = None
    for i, end in enumerate(abs_word_ends_all):
        if selected_token_abs_idx <= end:
            selected_word_idx = i
            break
    if selected_word_idx is None and abs_word_ends_all:
        selected_word_idx = len(abs_word_ends_all) - 1

    spans = []
    for i, w in enumerate(words_all):
        alpha = min(1.0, word_scores[i] / max_attn) if max_attn > 0 else 0.0
        bg = f"rgba(66,133,244,{alpha:.3f})"
        border = "2px solid #fff" if i == selected_word_idx else "1px solid transparent"
        spans.append(
            f"<span style='display:inline-block;background:{bg};border:{border};"
            f"border-radius:6px;padding:2px 6px;margin:2px 4px 4px 0;color:#fff;'>"
            f"{w}</span>"
        )

    return (
        "<div style='width:100%;'>"
        "  <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
        "    <div style='white-space:normal;line-height:1.8;'>"
        f"      {''.join(spans)}"
        "    </div>"
        "  </div>"
        "</div>"
    )

# =========================
# Core functions
# =========================
def run_generation(prompt, max_new_tokens, temperature, top_p):
    """Generate and prepare word-level selector + initial visualization."""
    inputs = tokenizer(prompt or "", return_tensors="pt").to(device)
    prompt_len = inputs["input_ids"].shape[1]

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=int(max_new_tokens),
            temperature=float(temperature),
            top_p=float(top_p),
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            output_attentions=True,
            return_dict_in_generate=True,
        )

    all_token_ids = outputs.sequences[0].tolist()

    # Build mappings for (prompt+generated) and for generated-only
    words_all, abs_all, words_gen, abs_gen = _words_and_maps_for_full_and_gen(all_token_ids, prompt_len)

    # Radio choices: ONLY generated words
    display_choices = [(w, i) for i, w in enumerate(words_gen)]

    if not display_choices:
        return {
            state_attentions: None,
            state_all_token_ids: None,
            state_prompt_len: 0,
            state_words_all: None,
            state_abs_all: None,
            state_gen_abs: None,
            radio_word_selector: gr.update(choices=[], value=None),
            html_visualization: "<div style='text-align:center;padding:20px;'>No generated tokens to visualize.</div>",
        }

    first_gen_idx = 0
    html_init = update_visualization(
        first_gen_idx,
        outputs.attentions,
        all_token_ids,
        prompt_len,
        0, 0, True, True,
        words_all,
        abs_all,
        abs_gen,  # map selector index -> absolute token end
    )

    return {
        state_attentions: outputs.attentions,
        state_all_token_ids: all_token_ids,
        state_prompt_len: prompt_len,
        state_words_all: words_all,
        state_abs_all: abs_all,
        state_gen_abs: abs_gen,
        radio_word_selector: gr.update(choices=display_choices, value=first_gen_idx),
        html_visualization: html_init,
    }

def update_visualization(
    selected_gen_index,
    attentions,
    all_token_ids,
    prompt_len,
    layer,
    head,
    mean_layers,
    mean_heads,
    words_all,
    abs_all,
    gen_abs_list,   # absolute last-token indices for generated words (selector domain)
):
    """Recompute visualization for the chosen GENERATED word, over full context."""
    if selected_gen_index is None or attentions is None or gen_abs_list is None:
        return "<div style='text-align:center;padding:20px;'>Generate text first.</div>"

    gidx = int(selected_gen_index)
    if not (0 <= gidx < len(gen_abs_list)):
        return "<div style='text-align:center;padding:20px;'>Invalid selection.</div>"

    token_index_abs = int(gen_abs_list[gidx])

    # Map absolute generated index -> generation step
    # step = abs_idx - prompt_len (clamped)
    if len(attentions) == 0:
        return "<div style='text-align:center;padding:20px;'>No attention steps available.</div>"

    step_index = token_index_abs - prompt_len
    step_index = max(0, min(step_index, len(attentions) - 1))

    token_attn = get_attention_for_token_layer(
        attentions,
        token_index=step_index,              # index by generation step
        layer_index=int(layer),
        head_index=int(head),
        mean_across_layers=bool(mean_layers),
        mean_across_heads=bool(mean_heads),
    )

    attn_vals = token_attn.detach().cpu().numpy()
    if attn_vals.ndim == 2:
        attn_vals = attn_vals[-1]

    total_tokens = len(all_token_ids)
    padded = np.zeros(total_tokens, dtype=float)
    k_len = min(len(attn_vals), total_tokens)
    padded[:k_len] = attn_vals[:k_len]

    # Absolute word ends for FULL sequence (prompt + generated)
    abs_word_ends = [int(i) for i in (abs_all or [])]

    return generate_word_visualization(words_all, abs_word_ends, padded, token_index_abs)

def toggle_slider(is_mean):
    return gr.update(interactive=not bool(is_mean))

# =========================
# Gradio UI
# =========================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🤖 Word-Level Attention Visualizer — choose a model & explore")
    gr.Markdown(
        "Generate text, then select a **generated word** to see where it attends. "
        "The viewer below shows attention over both the **prompt** and the **generated** continuation. "
        "EOS tokens are stripped so `<|endoftext|>` doesn’t appear."
    )

    # States
    state_attentions = gr.State(None)
    state_all_token_ids = gr.State(None)
    state_prompt_len = gr.State(None)
    state_words_all = gr.State(None)   # full (prompt + gen) words
    state_abs_all = gr.State(None)     # full abs ends
    state_gen_abs = gr.State(None)     # generated-only abs ends
    state_model_name = gr.State(None)

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### 0) Model")
            dd_model = gr.Dropdown(
                ALLOWED_MODELS, value=ALLOWED_MODELS[0], label="Causal LM",
                info="Models that work with AutoModelForCausalLM + attentions"
            )
            btn_load = gr.Button("Load / Switch Model", variant="secondary")

            gr.Markdown("### 1) Generation")
            txt_prompt = gr.Textbox("In a distant future, humanity", label="Prompt")
            btn_generate = gr.Button("Generate", variant="primary")
            slider_max_tokens = gr.Slider(10, 200, value=50, step=10, label="Max New Tokens")
            slider_temp = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
            slider_top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top P")

            gr.Markdown("### 2) Attention")
            check_mean_layers = gr.Checkbox(True, label="Mean Across Layers")
            check_mean_heads = gr.Checkbox(True, label="Mean Across Heads")
            slider_layer = gr.Slider(0, 11, value=0, step=1, label="Layer", interactive=False)
            slider_head  = gr.Slider(0, 11, value=0, step=1, label="Head",  interactive=False)

        with gr.Column(scale=3):
            radio_word_selector = gr.Radio(
                [], label="Select Generated Word",
                info="Selector lists only generated words"
            )
            html_visualization = gr.HTML(
                "<div style='text-align:center;padding:20px;color:#888;border:1px dashed #888;border-radius:8px;'>"
                "Attention visualization will appear here.</div>"
            )

    # Load/switch model
    def on_load_model(selected_name, mean_layers, mean_heads):
        load_model(selected_name)
        L, H = model_heads_layers()
        return (
            selected_name,  # state_model_name
            gr.update(minimum=0, maximum=L - 1, value=0, interactive=not bool(mean_layers)),
            gr.update(minimum=0, maximum=H - 1, value=0, interactive=not bool(mean_heads)),
            # SAFE RADIO RESET
            gr.update(choices=[], value=None),
            "<div style='text-align:center;padding:20px;'>Model loaded. Generate to visualize.</div>",
        )

    btn_load.click(
        fn=on_load_model,
        inputs=[dd_model, check_mean_layers, check_mean_heads],
        outputs=[state_model_name, slider_layer, slider_head, radio_word_selector, html_visualization],
    )

    # Load default model at app start
    def _init_model(_):
        load_model(ALLOWED_MODELS[0])
        L, H = model_heads_layers()
        return (
            ALLOWED_MODELS[0],
            gr.update(minimum=0, maximum=L - 1, value=0, interactive=False),
            gr.update(minimum=0, maximum=H - 1, value=0, interactive=False),
            gr.update(choices=[], value=None),
        )
    demo.load(_init_model, inputs=[gr.State(None)], outputs=[state_model_name, slider_layer, slider_head, radio_word_selector])

    # Generate
    btn_generate.click(
        fn=run_generation,
        inputs=[txt_prompt, slider_max_tokens, slider_temp, slider_top_p],
        outputs=[
            state_attentions,
            state_all_token_ids,
            state_prompt_len,
            state_words_all,
            state_abs_all,
            state_gen_abs,
            radio_word_selector,
            html_visualization,
        ],
    )

    # Update viz on any control
    for control in [radio_word_selector, slider_layer, slider_head, check_mean_layers, check_mean_heads]:
        control.change(
            fn=update_visualization,
            inputs=[
                radio_word_selector,
                state_attentions,
                state_all_token_ids,
                state_prompt_len,
                slider_layer,
                slider_head,
                check_mean_layers,
                check_mean_heads,
                state_words_all,
                state_abs_all,
                state_gen_abs,
            ],
            outputs=html_visualization,
        )

    # Toggle slider interactivity
    check_mean_layers.change(toggle_slider, check_mean_layers, slider_layer)
    check_mean_heads.change(toggle_slider, check_mean_heads, slider_head)

if __name__ == "__main__":
    print(f"Device: {device}")
    load_model(ALLOWED_MODELS[0])
    demo.launch(debug=True)