Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	debug: peft
Browse files- app.py +46 -148
- requirements.txt +1 -4
    	
        app.py
    CHANGED
    
    | @@ -1,30 +1,10 @@ | |
| 1 | 
            -
            import sys
         | 
| 2 | 
            -
            import subprocess
         | 
| 3 | 
            -
            import importlib.util
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            # Check if required packages are installed
         | 
| 6 | 
            -
            required_packages = ["ftfy", "einops", "imageio", "peft", "bitsandbytes"]
         | 
| 7 | 
            -
            for package in required_packages:
         | 
| 8 | 
            -
                if importlib.util.find_spec(package) is None:
         | 
| 9 | 
            -
                    print(f"Installing missing dependency: {package}")
         | 
| 10 | 
            -
                    subprocess.check_call([sys.executable, "-m", "pip", "install", package])
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            import os
         | 
| 13 | 
             
            import torch
         | 
| 14 | 
             
            import gradio as gr
         | 
| 15 | 
             
            import spaces
         | 
| 16 | 
             
            from diffusers.utils import export_to_video
         | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
                from diffusers import AutoencoderKLWan, WanPipeline
         | 
| 21 | 
            -
                from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
         | 
| 22 | 
            -
                from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
         | 
| 23 | 
            -
                import peft
         | 
| 24 | 
            -
                print("Successfully imported all required modules")
         | 
| 25 | 
            -
            except ImportError as e:
         | 
| 26 | 
            -
                print(f"Error importing diffusers components: {e}")
         | 
| 27 | 
            -
                subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "diffusers", "peft"])
         | 
| 28 |  | 
| 29 | 
             
            # Define model options
         | 
| 30 | 
             
            MODEL_OPTIONS = {
         | 
| @@ -38,21 +18,7 @@ SCHEDULER_OPTIONS = { | |
| 38 | 
             
                "FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
         | 
| 39 | 
             
            }
         | 
| 40 |  | 
| 41 | 
            -
             | 
| 42 | 
            -
                """
         | 
| 43 | 
            -
                Alternative approach to loading the model with LoRA weights 
         | 
| 44 | 
            -
                without using the built-in load_lora_weights method.
         | 
| 45 | 
            -
                """
         | 
| 46 | 
            -
                print(f"Loading model: {model_id}")
         | 
| 47 | 
            -
                vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
         | 
| 48 | 
            -
                pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
         | 
| 49 | 
            -
                
         | 
| 50 | 
            -
                # Print PEFT version information
         | 
| 51 | 
            -
                print(f"PEFT version: {peft.__version__}")
         | 
| 52 | 
            -
                
         | 
| 53 | 
            -
                return pipe
         | 
| 54 | 
            -
             | 
| 55 | 
            -
            @spaces.GPU(duration=300)  # Set a 5-minute duration for the GPU access
         | 
| 56 | 
             
            def generate_video(
         | 
| 57 | 
             
                model_choice,
         | 
| 58 | 
             
                prompt,
         | 
| @@ -68,119 +34,52 @@ def generate_video( | |
| 68 | 
             
                num_inference_steps,
         | 
| 69 | 
             
                output_fps
         | 
| 70 | 
             
            ):
         | 
| 71 | 
            -
                 | 
| 72 | 
            -
                 | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
                     | 
| 81 | 
            -
                         | 
| 82 | 
            -
                         | 
| 83 | 
            -
                    
         | 
| 84 | 
            -
             | 
| 85 | 
            -
                     | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
             | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
             | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
                     | 
| 100 | 
            -
                     | 
| 101 | 
            -
                    
         | 
| 102 | 
            -
                     | 
| 103 | 
            -
                     | 
| 104 | 
            -
                     | 
| 105 | 
            -
                    
         | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
             | 
| 113 | 
            -
                        except Exception as e:
         | 
| 114 | 
            -
                            print(f"Error loading LoRA weights: {str(e)}")
         | 
| 115 | 
            -
                            
         | 
| 116 | 
            -
                            # Try an alternative approach
         | 
| 117 | 
            -
                            try:
         | 
| 118 | 
            -
                                print("Attempting alternative approach for LoRA integration...")
         | 
| 119 | 
            -
                                # Let's try the direct adapter approach
         | 
| 120 | 
            -
                                from peft import PeftModel
         | 
| 121 | 
            -
                                from huggingface_hub import hf_hub_download
         | 
| 122 | 
            -
                                
         | 
| 123 | 
            -
                                # Make a temporary directory for the LoRA weights
         | 
| 124 | 
            -
                                lora_dir = "lora_weights"
         | 
| 125 | 
            -
                                os.makedirs(lora_dir, exist_ok=True)
         | 
| 126 | 
            -
                                
         | 
| 127 | 
            -
                                # Download the LoRA weights
         | 
| 128 | 
            -
                                print(f"Downloading LoRA weights from {lora_id}")
         | 
| 129 | 
            -
                                lora_file = hf_hub_download(lora_id, filename="pytorch_lora_weights.safetensors")
         | 
| 130 | 
            -
                                
         | 
| 131 | 
            -
                                print(f"LoRA file downloaded: {lora_file}")
         | 
| 132 | 
            -
                                print("Applying LoRA weights manually...")
         | 
| 133 | 
            -
                                
         | 
| 134 | 
            -
                                # Instead of trying to directly integrate LoRA, we'll just proceed without it for now
         | 
| 135 | 
            -
                                # but with a warning message
         | 
| 136 | 
            -
                                print("WARNING: Could not load LoRA weights. Proceeding without LoRA adaptation.")
         | 
| 137 | 
            -
                            except Exception as nested_e:
         | 
| 138 | 
            -
                                print(f"Alternative LoRA approach also failed: {str(nested_e)}")
         | 
| 139 | 
            -
                                print("Proceeding without LoRA weights")
         | 
| 140 | 
            -
                    
         | 
| 141 | 
            -
                    # Generate the video
         | 
| 142 | 
            -
                    print(f"Generating video with prompt: {prompt[:50]}...")
         | 
| 143 | 
            -
                    print(f"Parameters: height={height}, width={width}, num_frames={num_frames}, "
         | 
| 144 | 
            -
                          f"guidance_scale={guidance_scale}, steps={num_inference_steps}")
         | 
| 145 | 
            -
                    
         | 
| 146 | 
            -
                    # Prepare generation parameters
         | 
| 147 | 
            -
                    generation_params = {
         | 
| 148 | 
            -
                        "prompt": prompt,
         | 
| 149 | 
            -
                        "negative_prompt": negative_prompt,
         | 
| 150 | 
            -
                        "height": height,
         | 
| 151 | 
            -
                        "width": width,
         | 
| 152 | 
            -
                        "num_frames": num_frames,
         | 
| 153 | 
            -
                        "guidance_scale": guidance_scale,
         | 
| 154 | 
            -
                        "num_inference_steps": num_inference_steps
         | 
| 155 | 
            -
                    }
         | 
| 156 | 
            -
                    
         | 
| 157 | 
            -
                    # Add cross attention scale if LoRA was successfully loaded
         | 
| 158 | 
            -
                    if lora_id and lora_id.strip():
         | 
| 159 | 
            -
                        generation_params["cross_attention_kwargs"] = {"scale": lora_scale}
         | 
| 160 | 
            -
                        print(f"Using LoRA scale: {lora_scale}")
         | 
| 161 | 
            -
                    
         | 
| 162 | 
            -
                    # Generate the video
         | 
| 163 | 
            -
                    print("Starting generation...")
         | 
| 164 | 
            -
                    output = pipe(**generation_params).frames[0]
         | 
| 165 | 
            -
                    print(f"Generation complete, frames shape: {output.shape if hasattr(output, 'shape') else 'unknown'}")
         | 
| 166 | 
            -
                    
         | 
| 167 | 
            -
                    # Export to video
         | 
| 168 | 
            -
                    temp_file = "output.mp4"
         | 
| 169 | 
            -
                    print(f"Exporting video with fps={output_fps}")
         | 
| 170 | 
            -
                    export_to_video(output, temp_file, fps=output_fps)
         | 
| 171 | 
            -
                    print(f"Video exported to {temp_file}")
         | 
| 172 | 
            -
                    
         | 
| 173 | 
            -
                    return temp_file
         | 
| 174 | 
            -
                except Exception as e:
         | 
| 175 | 
            -
                    import traceback
         | 
| 176 | 
            -
                    error_trace = traceback.format_exc()
         | 
| 177 | 
            -
                    print(f"Error generating video: {str(e)}\n{error_trace}")
         | 
| 178 | 
            -
                    return f"Error generating video: {str(e)}\n{error_trace}"
         | 
| 179 |  | 
| 180 | 
             
            # Create the Gradio interface
         | 
| 181 | 
             
            with gr.Blocks() as demo:
         | 
| 182 | 
             
                gr.Markdown("# Wan Video Generation with ZeroGPU")
         | 
| 183 | 
            -
                gr.Markdown("Generate high-quality videos using the Wan model with optional LoRA adaptations.")
         | 
| 184 |  | 
| 185 | 
             
                with gr.Row():
         | 
| 186 | 
             
                    with gr.Column(scale=1):
         | 
| @@ -309,7 +208,6 @@ with gr.Blocks() as demo: | |
| 309 | 
             
                - For larger resolution videos, try higher values of flow shift (7.0-12.0)
         | 
| 310 | 
             
                - Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
         | 
| 311 | 
             
                - The model is memory intensive, so adjust resolution according to available VRAM
         | 
| 312 | 
            -
                - LoRA ID should be a Hugging Face repository containing safetensors files
         | 
| 313 | 
             
                """)
         | 
| 314 |  | 
| 315 | 
             
            demo.launch()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import gradio as gr
         | 
| 3 | 
             
            import spaces
         | 
| 4 | 
             
            from diffusers.utils import export_to_video
         | 
| 5 | 
            +
            from diffusers import AutoencoderKLWan, WanPipeline
         | 
| 6 | 
            +
            from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
         | 
| 7 | 
            +
            from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
             
            # Define model options
         | 
| 10 | 
             
            MODEL_OPTIONS = {
         | 
|  | |
| 18 | 
             
                "FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
         | 
| 19 | 
             
            }
         | 
| 20 |  | 
| 21 | 
            +
            @spaces.GPU(duration=300)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 | 
             
            def generate_video(
         | 
| 23 | 
             
                model_choice,
         | 
| 24 | 
             
                prompt,
         | 
|  | |
| 34 | 
             
                num_inference_steps,
         | 
| 35 | 
             
                output_fps
         | 
| 36 | 
             
            ):
         | 
| 37 | 
            +
                # Get model ID from selection
         | 
| 38 | 
            +
                model_id = MODEL_OPTIONS[model_choice]
         | 
| 39 | 
            +
                
         | 
| 40 | 
            +
                # Load model
         | 
| 41 | 
            +
                vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
         | 
| 42 | 
            +
                pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
         | 
| 43 | 
            +
                
         | 
| 44 | 
            +
                # Set scheduler
         | 
| 45 | 
            +
                if scheduler_type == "UniPCMultistepScheduler":
         | 
| 46 | 
            +
                    pipe.scheduler = UniPCMultistepScheduler.from_config(
         | 
| 47 | 
            +
                        pipe.scheduler.config,
         | 
| 48 | 
            +
                        flow_shift=flow_shift
         | 
| 49 | 
            +
                    )
         | 
| 50 | 
            +
                else:
         | 
| 51 | 
            +
                    pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
         | 
| 52 | 
            +
                
         | 
| 53 | 
            +
                # Move to GPU
         | 
| 54 | 
            +
                pipe.to("cuda")
         | 
| 55 | 
            +
                
         | 
| 56 | 
            +
                # Load LoRA weights if provided
         | 
| 57 | 
            +
                if lora_id and lora_id.strip():
         | 
| 58 | 
            +
                    pipe.load_lora_weights(lora_id)
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                # Enable CPU offload for low VRAM
         | 
| 61 | 
            +
                pipe.enable_model_cpu_offload()
         | 
| 62 | 
            +
                
         | 
| 63 | 
            +
                # Generate video
         | 
| 64 | 
            +
                output = pipe(
         | 
| 65 | 
            +
                    prompt=prompt,
         | 
| 66 | 
            +
                    negative_prompt=negative_prompt,
         | 
| 67 | 
            +
                    height=height,
         | 
| 68 | 
            +
                    width=width,
         | 
| 69 | 
            +
                    num_frames=num_frames,
         | 
| 70 | 
            +
                    guidance_scale=guidance_scale,
         | 
| 71 | 
            +
                    num_inference_steps=num_inference_steps
         | 
| 72 | 
            +
                ).frames[0]
         | 
| 73 | 
            +
                
         | 
| 74 | 
            +
                # Export to video
         | 
| 75 | 
            +
                temp_file = "output.mp4"
         | 
| 76 | 
            +
                export_to_video(output, temp_file, fps=output_fps)
         | 
| 77 | 
            +
                
         | 
| 78 | 
            +
                return temp_file
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 79 |  | 
| 80 | 
             
            # Create the Gradio interface
         | 
| 81 | 
             
            with gr.Blocks() as demo:
         | 
| 82 | 
             
                gr.Markdown("# Wan Video Generation with ZeroGPU")
         | 
|  | |
| 83 |  | 
| 84 | 
             
                with gr.Row():
         | 
| 85 | 
             
                    with gr.Column(scale=1):
         | 
|  | |
| 208 | 
             
                - For larger resolution videos, try higher values of flow shift (7.0-12.0)
         | 
| 209 | 
             
                - Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
         | 
| 210 | 
             
                - The model is memory intensive, so adjust resolution according to available VRAM
         | 
|  | |
| 211 | 
             
                """)
         | 
| 212 |  | 
| 213 | 
             
            demo.launch()
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -7,7 +7,4 @@ ftfy>=6.1.3 | |
| 7 | 
             
            einops>=0.7.0
         | 
| 8 | 
             
            imageio>=2.31.6
         | 
| 9 | 
             
            imageio-ffmpeg>=0.4.9
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            omegaconf>=2.3.0
         | 
| 12 | 
            -
            peft==0.7.1
         | 
| 13 | 
            -
            bitsandbytes>=0.41.0
         | 
|  | |
| 7 | 
             
            einops>=0.7.0
         | 
| 8 | 
             
            imageio>=2.31.6
         | 
| 9 | 
             
            imageio-ffmpeg>=0.4.9
         | 
| 10 | 
            +
            peft==0.7.1
         | 
|  | |
|  | |
|  | 
