Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from deep_heatmaps_model_primary_valid import DeepHeatmapsModel | |
# data_dir ='/mnt/External1/Yarden/deep_face_heatmaps/data/conventional_landmark_detection_dataset/' | |
data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' | |
pre_train_path = 'saved_models/0.01/model/deep_heatmaps-50000' | |
flags = tf.app.flags | |
flags.DEFINE_string('mode', 'TRAIN', "'TRAIN' or 'TEST'") | |
flags.DEFINE_string('save_model_path', 'model', "directory for saving the model") | |
flags.DEFINE_string('save_sample_path', 'sample', "directory for saving the sampled images") | |
flags.DEFINE_string('save_log_path', 'logs', "directory for saving the log file") | |
flags.DEFINE_string('img_path', data_dir, "data directory") | |
flags.DEFINE_string('test_model_path', 'model/deep_heatmaps-5', 'saved model to test') | |
flags.DEFINE_string('test_data', 'full', 'dataset to test: full/common/challenging/test/art') | |
flags.DEFINE_string('pre_train_path', pre_train_path, 'pretrained model path') | |
FLAGS = flags.FLAGS | |
def main(_): | |
# create directories if not exist | |
if not tf.gfile.Exists(FLAGS.save_model_path): | |
tf.gfile.MakeDirs(FLAGS.save_model_path) | |
if not tf.gfile.Exists(FLAGS.save_sample_path): | |
tf.gfile.MakeDirs(FLAGS.save_sample_path) | |
if not tf.gfile.Exists(FLAGS.save_log_path): | |
tf.gfile.MakeDirs(FLAGS.save_log_path) | |
model = DeepHeatmapsModel(mode=FLAGS.mode, train_iter=80000, learning_rate=1e-11, momentum=0.95, step=80000, | |
gamma=0.1, batch_size=4, image_size=256, c_dim=3, num_landmarks=68, | |
augment_basic=True, basic_start=1, augment_texture=True, p_texture=0., | |
augment_geom=True, p_geom=0., artistic_start=2, artistic_step=1, | |
img_path=FLAGS.img_path, save_log_path=FLAGS.save_log_path, | |
save_sample_path=FLAGS.save_sample_path, save_model_path=FLAGS.save_model_path, | |
test_data=FLAGS.test_data, test_model_path=FLAGS.test_model_path, | |
load_pretrain=False, pre_train_path=FLAGS.pre_train_path) | |
if FLAGS.mode == 'TRAIN': | |
model.train() | |
else: | |
model.eval() | |
if __name__ == '__main__': | |
tf.app.run() | |