import tensorflow as tf from deep_heatmaps_model_primary_valid import DeepHeatmapsModel import os import numpy as np num_tests = 10 params = np.logspace(-8, -2, num_tests) max_iter = 80000 output_dir = 'tests_lr_fusion' data_dir = '../conventional_landmark_detection_dataset' flags = tf.app.flags flags.DEFINE_string('output_dir', output_dir, "directory for saving the log file") flags.DEFINE_string('img_path', data_dir, "data directory") FLAGS = flags.FLAGS if not os.path.exists(FLAGS.output_dir): os.mkdir(FLAGS.output_dir) for param in params: test_name = str(param) test_dir = os.path.join(FLAGS.output_dir,test_name) if not os.path.exists(test_dir): os.mkdir(test_dir) print '##### RUNNING TESTS ##### current directory:', test_dir save_model_path = os.path.join(test_dir, 'model') save_sample_path = os.path.join(test_dir, 'sample') save_log_path = os.path.join(test_dir, 'logs') # create directories if not exist if not os.path.exists(save_model_path): os.mkdir(save_model_path) if not os.path.exists(save_sample_path): os.mkdir(save_sample_path) if not os.path.exists(save_log_path): os.mkdir(save_log_path) tf.reset_default_graph() # reset graph model = DeepHeatmapsModel(mode='TRAIN', train_iter=max_iter, learning_rate=param, momentum=0.95, step=80000, gamma=0.1, batch_size=4, image_size=256, c_dim=3, num_landmarks=68, augment_basic=True, basic_start=0, augment_texture=True, p_texture=0.5, augment_geom=True, p_geom=0.5, artistic_start=0, artistic_step=10, img_path=FLAGS.img_path, save_log_path=save_log_path, save_sample_path=save_sample_path, save_model_path=save_model_path) model.train()