File size: 6,281 Bytes
0edab04
 
 
d9a62b3
 
0edab04
 
 
 
 
990159e
 
0edab04
dc3a0c9
990159e
0edab04
990159e
 
 
 
 
 
 
 
 
 
 
 
 
0edab04
 
 
 
d9a62b3
 
0edab04
 
72e0f08
 
 
 
 
0edab04
 
 
 
 
d9a62b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e0f08
d9a62b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e0f08
0edab04
d9a62b3
 
 
 
 
 
 
 
 
 
0edab04
 
 
d9a62b3
0edab04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a62b3
990159e
 
 
d9a62b3
45b2ac8
 
990159e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.

# %% auto 0
__all__ = ['secret_import_failed', 'tts_voices', 'launch_kwargs', 'split_text', 'concatenate_mp3', 'create_speech',
           'get_input_text_len']

# %% app.ipynb 1
#tts_openai_secrets.py content:
#import os
#os.environ['OPENAI_API_KEY'] = 'sk-XXXXXXXXXXXXXXXXXXXXXX'
import os
secret_import_failed = False
try:
    _ = os.environ['OPENAI_API_KEY']
    print('OPENAI_API_KEY environment variable was found.')
except:
    print('OPENAI_API_KEY environment variable was not found.')
    secret_import_failed = True
try:
    GRADIO_PASSWORD = os.environ['GRADIO_PASSWORD']
    print('GRADIO_PASSWORD environment variable was found.')
except:
    print('GRADIO_PASSWORD environment variable was not found.')
    secret_import_failed = True

if secret_import_failed == True:
    import tts_openai_secrets
    GRADIO_PASSWORD = os.environ['GRADIO_PASSWORD']
    print('import tts_openai_secrets succeeded')

# %% app.ipynb 3
import gradio as gr
import openai
from pydub import AudioSegment
import io

# %% app.ipynb 4
try:
    tts_models = [o.id for o in openai.models.list().data if 'tts' in o.id]
    print('successfully got tts model list:', tts_models)
except:
    tts_models = ['tts-1']

# %% app.ipynb 5
tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']

# %% app.ipynb 6
def split_text(input_text, max_length=4000, lookback=1000):
    # If the text is shorter than the max_length, return it as is
    if len(input_text) <= max_length:
        return [input_text]

    chunks = []
    while input_text:
        # Check if the remaining text is shorter than the max_length
        if len(input_text) <= max_length:
            chunks.append(input_text)
            break

        # Define the split point, initially set to max_length
        split_point = max_length

        # Look for a newline in the last 'lookback' characters
        newline_index = input_text.rfind('\n', max_length-lookback, max_length)
        if newline_index != -1:
            split_point = newline_index + 1  # Include the newline in the current chunk

        # If no newline, look for a period followed by space
        elif '. ' in input_text[max_length-lookback:max_length]:
            # Find the last '. ' in the lookback range
            period_index = input_text.rfind('. ', max_length-lookback, max_length)
            split_point = period_index + 2  # Split after the space

        # Split the text and update the input_text
        chunks.append(input_text[:split_point])
        input_text = input_text[split_point:]

    return chunks

# %% app.ipynb 7
def concatenate_mp3(mp3_files):
    if len(mp3_files) == 1:
        return mp3_files[0]
    else:
        # Initialize an empty AudioSegment object for concatenation
        combined = AudioSegment.empty()
        
        # Write out audio file responses as individual files for debugging
        # for idx, mp3_data in enumerate(mp3_files):
        #     with open(f'./{idx}.mp3', 'wb') as f:
        #         f.write(mp3_data)

        # Loop through the list of mp3 binary data
        for mp3_data in mp3_files:
            # Convert binary data to an audio segment
            audio_segment = AudioSegment.from_file(io.BytesIO(mp3_data), format="mp3")
            # Concatenate this segment to the combined segment
            combined += audio_segment

        # Export the combined segment to a new mp3 file
        # Use a BytesIO object to handle this in memory
        combined_mp3 = io.BytesIO()
        combined.export(combined_mp3, format="mp3")

        # Seek to the start so it's ready for reading
        combined_mp3.seek(0)

        return combined_mp3.getvalue()

# %% app.ipynb 8
def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress()):
    # Split the input text into chunks
    chunks = split_text(input_text)

    # Initialize the progress bar
    progress(0, desc="Starting TTS processing...")

    # Initialize a list to hold the audio data of each chunk
    audio_data = []

    # Create a client instance for OpenAI
    client = openai.OpenAI()

    # Calculate the progress increment for each chunk
    progress_increment = 1.0 / len(chunks)

    # Process each chunk
    for i, chunk in enumerate(chunks):
        response = client.audio.speech.create(
            model=model,
            voice=voice,
            input=chunk,
            speed=1.0
        )
        # Append the audio content of the response to the list
        audio_data.append(response.content)

        # Update the progress bar
        progress((i + 1) * progress_increment, desc=f"Processing chunk {i + 1} of {len(chunks)}")

    # Close the client connection
    client.close()

    # Concatenate the audio data from all chunks
    combined_audio = concatenate_mp3(audio_data)

    # Final update to the progress bar
    progress(1, desc="Processing completed")

    return combined_audio


# %% app.ipynb 9
def get_input_text_len(input_text):
    return len(input_text)

# %% app.ipynb 10
with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:
    gr.Markdown("# OpenAI TTS")
    gr.Markdown("Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters.")
    with gr.Row():
        input_text = gr.Textbox(max_lines=100, label="Enter text here")
    with gr.Row():
        tts_model_dropdown = gr.Dropdown(value='tts-1',choices=tts_models, label='Model')
        tts_voice_dropdown = gr.Dropdown(value='alloy',choices=tts_voices,label='Voice')
        input_text_length = gr.Label(label="Number of characters")
        output_audio = gr.Audio()
    input_text.input(fn=get_input_text_len, inputs=input_text, outputs=input_text_length)
    go_btn = gr.Button("Go")
    go_btn.click(fn=create_speech, inputs=[input_text, tts_model_dropdown, tts_voice_dropdown], outputs=[output_audio])
    clear_btn = gr.Button('Clear')
    clear_btn.click(fn=lambda: '', outputs=input_text)
    

# %% app.ipynb 11
launch_kwargs = {'auth':('username',GRADIO_PASSWORD),
                 'auth_message':'Please log in to Mat\'s TTS App with username: username and password.'}

# %% app.ipynb 13
#.py launch
if __name__ == "__main__":
    app.launch(**launch_kwargs)