Added error handling for video loading, added output flagging
Browse files- app.py +12 -1
- helpers.py +39 -29
app.py
CHANGED
@@ -10,6 +10,8 @@ theme = gr.themes.Default(
|
|
10 |
font=[gr.themes.GoogleFont("IBM Plex Mono"), "system-ui"]
|
11 |
)
|
12 |
|
|
|
|
|
13 |
with gr.Blocks(theme=theme) as demo:
|
14 |
# DEFINE COMPONENTS
|
15 |
|
@@ -49,11 +51,20 @@ with gr.Blocks(theme=theme) as demo:
|
|
49 |
visible=False
|
50 |
)
|
51 |
|
|
|
|
|
|
|
52 |
# DEFINE FUNCTIONS
|
53 |
# Load video from URL, display sample frames, and enable prediction button
|
54 |
loadVideoBtn.click(fn=load_video_from_url, inputs=[urlInput], outputs=[videoTitle, sampleFrames, predVideoBtn, predOutput])
|
55 |
|
56 |
# Generate video prediction
|
57 |
-
predVideoBtn.click(fn=detect_deepfake, outputs=[predOutput])
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
demo.launch()
|
|
|
10 |
font=[gr.themes.GoogleFont("IBM Plex Mono"), "system-ui"]
|
11 |
)
|
12 |
|
13 |
+
callback = gr.CSVLogger()
|
14 |
+
|
15 |
with gr.Blocks(theme=theme) as demo:
|
16 |
# DEFINE COMPONENTS
|
17 |
|
|
|
51 |
visible=False
|
52 |
)
|
53 |
|
54 |
+
# Button for flagging the output
|
55 |
+
flagBtn = gr.Button(value="Flag Output", visible=False)
|
56 |
+
|
57 |
# DEFINE FUNCTIONS
|
58 |
# Load video from URL, display sample frames, and enable prediction button
|
59 |
loadVideoBtn.click(fn=load_video_from_url, inputs=[urlInput], outputs=[videoTitle, sampleFrames, predVideoBtn, predOutput])
|
60 |
|
61 |
# Generate video prediction
|
62 |
+
predVideoBtn.click(fn=detect_deepfake, outputs=[predOutput, flagBtn])
|
63 |
+
|
64 |
+
# Define flag callback
|
65 |
+
callback.setup([urlInput], "flagged_data_points")
|
66 |
+
|
67 |
+
# Flag output
|
68 |
+
flagBtn.click(fn=lambda *args: callback.flag(args), inputs=[urlInput], outputs=None)
|
69 |
|
70 |
demo.launch()
|
helpers.py
CHANGED
@@ -9,40 +9,47 @@ import pickle
|
|
9 |
|
10 |
|
11 |
def load_video_from_url(youtube_url):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Define visible prediction components to show upon video loaded
|
40 |
-
predVideoBtn = gr.Button(value="Classify Video", visible=
|
41 |
|
42 |
predOutput = gr.Label(
|
43 |
label="DETECTED LABEL (AND CONFIDENCE LEVEL)",
|
44 |
num_top_classes=2,
|
45 |
-
visible=
|
46 |
)
|
47 |
|
48 |
return title, example_frames, predVideoBtn, predOutput
|
@@ -66,8 +73,11 @@ def detect_deepfake():
|
|
66 |
fake_confidence = 1 - real_confidence
|
67 |
confidence_dict = {"FAKE": fake_confidence, "REAL": real_confidence}
|
68 |
|
|
|
|
|
|
|
69 |
# RETURN THE OUTPUT LABEL AND EXAMPLE FRAMES
|
70 |
-
return confidence_dict
|
71 |
|
72 |
|
73 |
def sample_frames_from_video_file(capture, sample_count=10, frames_per_sample=10, frame_step=10,
|
|
|
9 |
|
10 |
|
11 |
def load_video_from_url(youtube_url):
|
12 |
+
visible = True
|
13 |
+
try:
|
14 |
+
# DOWNLOAD THE VIDEO USING THE GIVEN URL
|
15 |
+
yt = YouTube(youtube_url)
|
16 |
+
yt_stream = yt.streams.filter(file_extension='mp4').first()
|
17 |
+
title = yt_stream.title
|
18 |
+
src = yt_stream.download()
|
19 |
+
capture = cv2.VideoCapture(src)
|
20 |
+
|
21 |
+
# SAMPLE FRAMES FROM VIDEO FILE
|
22 |
+
sampled_frames = sample_frames_from_video_file(capture)
|
23 |
+
|
24 |
+
# PICK EXAMPLE FRAME FROM THE MIDDLE OF THE SAMPLED FRAMES
|
25 |
+
example_frames = [
|
26 |
+
sampled_frames[len(sampled_frames) // 4],
|
27 |
+
sampled_frames[len(sampled_frames) // 2],
|
28 |
+
sampled_frames[3 * len(sampled_frames) // 4],
|
29 |
+
]
|
30 |
+
|
31 |
+
# DELETE VIDEO FILE
|
32 |
+
if os.path.exists(src):
|
33 |
+
os.remove(src)
|
34 |
+
|
35 |
+
# CONVERT SAMPLED FRAMES TO TENSOR
|
36 |
+
frames_tensor = tf.expand_dims(tf.convert_to_tensor(sampled_frames, dtype=tf.float32), axis=0)
|
37 |
+
|
38 |
+
# SAVE TENSOR TO FILE
|
39 |
+
pickle.dump(frames_tensor, open("frames_tf.pkl", "wb"))
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
title = "Error while loading video: " + str(e)
|
43 |
+
visible = False
|
44 |
+
example_frames = [np.zeros((256, 256, 3)) for _ in range(3)]
|
45 |
|
46 |
# Define visible prediction components to show upon video loaded
|
47 |
+
predVideoBtn = gr.Button(value="Classify Video", visible=visible)
|
48 |
|
49 |
predOutput = gr.Label(
|
50 |
label="DETECTED LABEL (AND CONFIDENCE LEVEL)",
|
51 |
num_top_classes=2,
|
52 |
+
visible=visible
|
53 |
)
|
54 |
|
55 |
return title, example_frames, predVideoBtn, predOutput
|
|
|
73 |
fake_confidence = 1 - real_confidence
|
74 |
confidence_dict = {"FAKE": fake_confidence, "REAL": real_confidence}
|
75 |
|
76 |
+
# MAKE FLAG BUTTON VISIBLE
|
77 |
+
flagBtn = gr.Button(value="Flag Output", visible=True)
|
78 |
+
|
79 |
# RETURN THE OUTPUT LABEL AND EXAMPLE FRAMES
|
80 |
+
return confidence_dict, flagBtn
|
81 |
|
82 |
|
83 |
def sample_frames_from_video_file(capture, sample_count=10, frames_per_sample=10, frame_step=10,
|