File size: 5,555 Bytes
eaaf050
 
 
4c54085
 
 
 
 
 
 
 
1e9a96d
eaaf050
1e9a96d
4c54085
eaaf050
4c54085
 
 
1e9a96d
 
 
4c54085
1e9a96d
eaaf050
8520a66
1e9a96d
eaaf050
 
 
 
 
1e9a96d
 
8520a66
1e9a96d
8520a66
 
4c54085
 
 
8520a66
1e9a96d
8520a66
1e9a96d
 
 
 
8520a66
 
 
 
4c54085
 
 
fe63cd7
 
4c54085
 
fe63cd7
 
 
 
 
 
 
 
 
 
 
 
 
4c54085
 
fe63cd7
eaaf050
8520a66
4c54085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8520a66
 
 
1e9a96d
 
 
 
 
 
4c54085
 
1e9a96d
 
8520a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c54085
 
1e9a96d
eaaf050
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python
# coding=utf-8
# Copyright 2025 The Footscray Coding Collective. All rights reserved.
"""
Text cleaning tool for smolagents.

Provides a Tool implementation that wraps the cleantext library for normalizing
text content with handling for various text transformation options.
"""

# Standard library imports
import logging
from typing import Any, Dict, Optional

# Third-party imports
from cleantext import clean
from smolagents import Tool

# Configure module logger
logger = logging.getLogger(__name__)


# pylint: disable=too-few-public-methods
class TextCleanerTool(Tool):
    """A simple text cleaner tool."""

    name = "clean_text"
    description = """This tool can be used to process messy user-generated content into
    normalized text. It handles a variety of text transformation options,
    such as fixing unicode errors, transliterating to closest ASCII,
    lowercasing text, normalizing line breaks, removing punctuation,
    replacing numbers with a token, and more."""
    inputs = {
        "text": {"type": "string", "description": "The input text to clean"},
        "options": {
            "type": "object",
            "description": (
                "Optional parameters for text cleaning. Available options: "
                "fix_unicode, to_ascii, lower, no_line_breaks, no_urls, "
                "no_emails, no_phone_numbers, no_numbers, no_digits, "
                "no_currency_symbols, no_punct, no_emoji, lang"
            ),
            "optional": True,
            "nullable": True,
        },
    }
    output_type = "string"

    def forward(self, text: str, options: Optional[Dict[str, Any]] = None) -> str:
        """
        Clean text using the cleantext library with flexible options.

        User-generated content on the Web and in social media is often dirty.
        Preprocess your scraped data with `clean-text` to create a normalized
        text representation. For instance, turn this corrupted input:

        ```
        A bunch of \\u2018new\\u2019 references, including
        [Moana](https://en.wikipedia.org/wiki/Moana_%282016_film%29).


        »Yóù àré     rïght <3!«
        ```

        into this clean output:

        ```
        A bunch of 'new' references, including [moana](<URL>).

        "you are right <3!"
        ```

        `clean-text` uses ftfy, unidecode and numerous hand-crafted rules,
        i.e., RegEx.

        Usage of the cleantext API:
        clean("some input",
            fix_unicode=True,          # fix various unicode errors
            to_ascii=True,             # transliterate to closest ASCII
            lower=True,                # lowercase text
            no_line_breaks=False,      # normalize line breaks
            no_urls=False,             # replace URLs with a token
            no_emails=False,           # replace email addresses with token
            no_phone_numbers=False,    # replace phone numbers with token
            no_numbers=False,          # replace all numbers with token
            no_digits=False,           # replace all digits with 0
            no_currency_symbols=False, # replace currency symbols with token
            no_punct=False,            # remove punctuations
            replace_with_punct="",     # replacement for punctuation
            replace_with_url="<URL>",  # replacement for URLs
            replace_with_email="<EMAIL>", # replacement for emails
            replace_with_phone_number="<PHONE>", # replacement for phones
            replace_with_number="<NUMBER>", # replacement for numbers
            replace_with_digit="0",    # replacement for digits
            replace_with_currency_symbol="<CUR>", # currency replacement
            lang="en"                  # language ('en' or 'de' supported)
        )
        """
        # Input validation
        if not text:
            return ""

        if not isinstance(text, str):
            try:
                text = str(text)
            except (ValueError, TypeError) as e:
                logger.error("Failed to convert input to string: %s", e)
                return f"Error: Could not process input of type {type(text)}"

        # Default replacement tokens
        replacements = {
            "replace_with_url": "<URL>",
            "replace_with_email": "<EMAIL>",
            "replace_with_phone_number": "<PHONE>",
            "replace_with_number": "<NUMBER>",
            "replace_with_digit": "0",
            "replace_with_currency_symbol": "<CUR>",
            "replace_with_punct": "",
        }

        # Default options
        default_options = {
            "fix_unicode": True,
            "to_ascii": True,
            "lower": True,
            "no_line_breaks": False,
            "no_urls": False,
            "no_emails": False,
            "no_phone_numbers": False,
            "no_numbers": False,
            "no_digits": False,
            "no_currency_symbols": False,
            "no_punct": False,
            "no_emoji": False,
            "lang": "en",
        }

        # Merge user options with defaults
        if options:
            default_options.update(options)

        # Merge all parameters
        params = {**default_options, **replacements}

        try:
            # Apply cleantext with parameters
            return clean(text, **params)
        except (ValueError, TypeError, AttributeError) as e:
            logger.error("Error cleaning text: %s", e)
            return f"Error during text cleaning: {str(e)}"


__all__ = ["TextCleanerTool"]