OpenDeepResearch / scripts /finance_tools.py
Leonardo
Sync local Space with Hub
eaaf050 verified
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The Footscray Coding Collective. All rights reserved.
"""
Financial Data and Analysis Tools
--------------------------------------
A comprehensive suite of tools for retrieving financial market data through the Alpha Vantage API.
These tools enable accessing real-time stock quotes, company fundamentals, financial statements,
price history, market news, and sentiment analysis with proper error handling and caching.
The Alpha Vantage tools follow the Zhou Protocol for financial data retrieval:
- Singleton pattern for API client management
- Comprehensive error handling with failed request tracking
- In-memory request caching to minimize API usage
- Detailed docstrings with usage examples
Key Financial Tools:
- search_symbols: Find ticker symbols for companies by keywords
- get_stock_quote_data: Real-time stock quote information
- get_company_overview_data: Company profiles and fundamentals
- get_earnings_data: Quarterly and annual earnings information
- get_income_statement_data: Income statement analysis
- get_balance_sheet_data: Balance sheet information
- get_cash_flow_data: Cash flow statement analysis
- get_time_series_daily: Historical price and volume data
- get_market_news_sentiment: News and sentiment analysis
Financial Analysis Tools:
- FinancialCalculatorTool: Calculate financial metrics (growth rates, margins, CAGR)
- DataVisualizationTool: Generate visual representations of financial data
- TrendAnalysisTool: Perform year-over-year trend analysis on financial metrics
"""
import io
import logging
import os
import traceback
from typing import Any, Dict, Optional, Set
# Third-party imports in alphabetical order with dotenv first
try:
from dotenv import load_dotenv
load_dotenv()
except ImportError:
pass
import matplotlib.pyplot as plt # Plot the chart
import pandas as pd # Store dataframe
import requests
from smolagents import Tool, tool
class AlphaVantageClient:
"""Centralized client for Alpha Vantage API requests with caching and error handling."""
def __init__(self):
"""Initialize the client with empty caches."""
self._api_key: Optional[str] = None
self._failed_requests: Set[str] = set()
self._data_cache: Dict[str, Dict[str, Any]] = {}
def get_api_key(self) -> str:
"""
Get Alpha Vantage API key from environment or cache.
Returns:
API key string or error message
"""
if self._api_key:
return self._api_key
api_key = os.getenv("ALPHA_VANTAGE_API_KEY")
if not api_key:
return "Error: No API key found. Set ALPHA_VANTAGE_API_KEY in your environment."
self._api_key = api_key
return api_key
def make_request(self, function: str, symbol: str, **params: Any) -> Dict[str, Any]:
"""
Make a request to Alpha Vantage API with error handling and caching.
Args:
function (str): API function name
symbol (str): Stock symbol
**params (Any): Additional parameters for the request, excluding 'function' and 'symbol'
Returns:
Dict[str, Any]: Raw JSON response data
"""
# Validate params
if "function" in params or "symbol" in params:
raise ValueError("function and symbol should not be included in params")
# Generate cache key
cache_key = f"{function}:{symbol}:{hash(frozenset(params.items()))}"
# Return cached data if available
if cache_key in self._data_cache:
return self._data_cache[cache_key]
# Check if this request has failed before
if cache_key in self._failed_requests:
return {
"Error": f"Previously failed request for {symbol} with function {function}"
}
# Get API key
api_key = self.get_api_key()
if api_key.startswith("Error:"):
return {"Error Message": api_key}
# Build request URL and parameters
url = "https://www.alphavantage.co/query"
request_params = {
"function": function,
"symbol": symbol,
"apikey": api_key,
**params,
}
try:
# Make request with timeout for responsiveness
response = requests.get(url, params=request_params, timeout=10)
response.raise_for_status()
data = response.json()
# Check for API errors
if "Error Message" in data or "Information" in data or not data:
self._failed_requests.add(cache_key)
return data
# Cache successful response
self._data_cache[cache_key] = data
return data
except requests.RequestException as e:
error_data = {"Error Message": f"API request failed: {str(e)}"}
self._failed_requests.add(cache_key)
return error_data
except ValueError as e:
error_data = {"Error Message": f"Failed to parse response: {str(e)}"}
self._failed_requests.add(cache_key)
return error_data
def clear_cache(
self, function: Optional[str] = None, symbol: Optional[str] = None
) -> None:
"""
Clear the data cache, optionally filtering by function and/or symbol.
Args:
function: Optional function name to filter cache entries
symbol: Optional symbol to filter cache entries
"""
if not function and not symbol:
self._data_cache.clear()
return
keys_to_remove = []
for key in self._data_cache:
parts = key.split(":")
if function and parts[0] != function:
continue
if symbol and parts[1] != symbol:
continue
keys_to_remove.append(key)
for key in keys_to_remove:
del self._data_cache[key]
# Create a singleton instance of the client
_client = AlphaVantageClient()
@tool
def get_stock_quote_data(symbol: str) -> Dict[str, Any]:
"""
Retrieve raw real-time stock quote information from Alpha Vantage.
This tool fetches current market data for a specified stock ticker,
returning the raw data for custom processing and analysis.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
Returns:
Raw JSON data containing:
- Global Quote object with price, volume, and trading information
- Error information if the request failed
Example:
```python
# Get raw quote data
data = get_stock_quote_data("MSFT")
# Extract price
if "Global Quote" in data:
quote = data["Global Quote"]
price = float(quote.get("05. price", 0))
change = float(quote.get("09. change", 0))
print(f"MSFT: ${price:.2f} ({change:+.2f})")
```
"""
return _client.make_request("GLOBAL_QUOTE", symbol)
@tool
def get_company_overview_data(symbol: str) -> Dict[str, Any]:
"""
Retrieve raw company information and metrics from Alpha Vantage.
This tool provides comprehensive information about a company, returning
raw data for custom analysis and presentation.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
Returns:
Raw JSON data containing:
- Company profile (name, sector, industry)
- Financial metrics (market cap, P/E ratio, etc.)
- Performance indicators (ROE, ROA, etc.)
- Company description
- Error information if the request failed
Example:
```python
# Get company data
data = get_company_overview_data("AAPL")
# Create custom analysis
if "Sector" in data:
sector = data.get("Sector")
market_cap = float(data.get("MarketCapitalization", 0))
pe_ratio = float(data.get("PERatio", 0))
print(f"AAPL is in the {sector} sector")
print(f"Market Cap: ${market_cap/1e9:.2f}B")
print(f"P/E Ratio: {pe_ratio:.2f}")
```
"""
return _client.make_request("OVERVIEW", symbol)
@tool
def get_earnings_data(symbol: str) -> Dict[str, Any]:
"""
Retrieve raw earnings data for a company from Alpha Vantage.
This tool fetches quarterly and annual earnings data, returning
raw information for custom analysis and trend evaluation.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
Returns:
Raw JSON data containing:
- quarterlyEarnings array with fiscal dates, reported EPS, and surprises
- annualEarnings array with yearly EPS figures
- Error information if the request failed
Example:
```python
# Get earnings data
data = get_earnings_data("MSFT")
# Analyze earnings surprises
if "quarterlyEarnings" in data:
quarterly = data["quarterlyEarnings"]
# Calculate average earnings surprise percentage
surprises = [float(q.get("surprisePercentage", 0)) for q in quarterly[:4]]
avg_surprise = sum(surprises) / len(surprises)
print(f"Average earnings surprise (last 4Q): {avg_surprise:.2f}%")
# Find biggest positive surprise
max_surprise = max(surprises)
print(f"Largest positive surprise: {max_surprise:.2f}%")
```
"""
return _client.make_request("EARNINGS", symbol)
@tool
def get_income_statement_data(symbol: str) -> Dict[str, Any]:
"""
Retrieve raw income statement data for a company from Alpha Vantage.
This tool fetches annual and quarterly income statements, returning
raw financial data for custom analysis and profit trend evaluation.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
Returns:
Raw JSON data containing:
- annualReports array with yearly income statements
- quarterlyReports array with quarterly income statements
- Error information if the request failed
Example:
```python
# Get income statement data
data = get_income_statement_data("AAPL")
# Analyze profitability trends
if "annualReports" in data and len(data["annualReports"]) >= 3:
reports = data["annualReports"][:3] # Last 3 years
# Extract revenue and profit
revenues = [float(r.get("totalRevenue", 0)) for r in reports]
net_incomes = [float(r.get("netIncome", 0)) for r in reports]
# Calculate profit margins
margins = [ni/rev*100 if rev else 0 for ni, rev in zip(net_incomes, revenues)]
for i, margin in enumerate(margins):
year = reports[i].get("fiscalDateEnding", "Unknown")
print(f"{year}: Profit margin = {margin:.2f}%")
```
"""
return _client.make_request("INCOME_STATEMENT", symbol)
@tool
def get_balance_sheet_data(symbol: str) -> Dict[str, Any]:
"""
Retrieve raw balance sheet data for a company from Alpha Vantage.
This tool fetches annual and quarterly balance sheets, returning
raw financial data for custom analysis of a company's financial position.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
Returns:
Raw JSON data containing:
- annualReports array with yearly balance sheets
- quarterlyReports array with quarterly balance sheets
- Error information if the request failed
Example:
```python
# Get balance sheet data
data = get_balance_sheet_data("MSFT")
# Calculate debt-to-equity ratio
if "annualReports" in data and data["annualReports"]:
latest = data["annualReports"][0]
total_debt = float(latest.get("shortTermDebt", 0)) + float(latest.get("longTermDebt", 0))
equity = float(latest.get("totalShareholderEquity", 0))
if equity:
debt_to_equity = total_debt / equity
print(f"Debt-to-Equity Ratio: {debt_to_equity:.2f}")
# Calculate current ratio
current_assets = float(latest.get("totalCurrentAssets", 0))
current_liabilities = float(latest.get("totalCurrentLiabilities", 0))
if current_liabilities:
current_ratio = current_assets / current_liabilities
print(f"Current Ratio: {current_ratio:.2f}")
```
"""
return _client.make_request("BALANCE_SHEET", symbol)
@tool
def get_cash_flow_data(symbol: str) -> Dict[str, Any]:
"""
Retrieve raw cash flow statement data for a company from Alpha Vantage.
This tool fetches annual and quarterly cash flow statements, returning
raw financial data for analyzing a company's cash generation and usage.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
Returns:
Raw JSON data containing:
- annualReports array with yearly cash flow statements
- quarterlyReports array with quarterly cash flow statements
- Error information if the request failed
Example:
```python
# Get cash flow data
data = get_cash_flow_data("AMZN")
# Analyze free cash flow
if "annualReports" in data and data["annualReports"]:
reports = data["annualReports"][:3] # Last 3 years
for report in reports:
year = report.get("fiscalDateEnding", "Unknown")
operating_cf = float(report.get("operatingCashflow", 0))
capex = float(report.get("capitalExpenditures", 0))
# Free cash flow = Operating cash flow - Capital expenditures
free_cf = operating_cf - abs(capex)
print(f"{year}: Free Cash Flow = ${free_cf/1e9:.2f}B")
```
"""
return _client.make_request("CASH_FLOW", symbol)
@tool
def get_time_series_daily(symbol: str, outputsize: str = "compact") -> Dict[str, Any]:
"""
Retrieve daily time series stock price data from Alpha Vantage.
This tool fetches historical daily OHLCV (Open, High, Low, Close, Volume) data
for specified ticker symbols, supporting both compact (100 data points) and
full (20+ years) history.
Args:
symbol: The stock ticker symbol (e.g., 'AAPL', 'MSFT', 'IBM')
outputsize: Data size, either 'compact' (last 100 points) or 'full' (20+ years)
Returns:
Raw JSON data containing:
- "Meta Data" object with information about the data series
- "Time Series (Daily)" object with date-keyed OHLCV data points
- Error information if the request failed
Example:
```python
# Get daily prices (compact = last 100 days)
data = get_time_series_daily("TSLA")
# Calculate moving averages
if "Time Series (Daily)" in data:
time_series = data["Time Series (Daily)"]
dates = sorted(time_series.keys())
# Extract closing prices
prices = [float(time_series[date]["4. close"]) for date in dates]
# Calculate 20-day moving average
if len(prices) >= 20:
ma_20 = sum(prices[-20:]) / 20
print(f"20-day Moving Average: ${ma_20:.2f}")
# Get latest price
latest_price = prices[-1]
print(f"Latest price: ${latest_price:.2f}")
# Compare to moving average
diff_pct = (latest_price / ma_20 - 1) * 100
print(f"Price is {diff_pct:+.2f}% from 20-day MA")
```
"""
return _client.make_request("TIME_SERIES_DAILY", symbol, outputsize=outputsize)
# Ensure that the default value IS specified
@tool
def search_symbols(keywords: str) -> Dict[str, Any]:
"""
[FINANCIAL DISCOVERY] Search for stock symbols matching the provided keywords.
WHEN TO USE: ALWAYS use this tool FIRST when you don't know the exact stock symbol for a company.
This tool helps find relevant ticker symbols when you don't know the exact symbol,
matching companies by name, description, or partial symbols.
Args:
keywords: Search term (e.g., 'microsoft', 'tech', 'MSFT')
Returns:
Raw JSON data containing:
- bestMatches array with matching companies (symbol, name, type, region)
- Error information if the request failed
Example:
```python
# Search for companies related to "electric vehicles"
results = search_symbols("electric vehicles")
# Print matched symbols and names
if "bestMatches" in results:
matches = results["bestMatches"]
print(f"Found {len(matches)} matches:")
for match in matches:
symbol = match.get("1. symbol", "")
name = match.get("2. name", "")
market = match.get("4. region", "")
print(f"{symbol} - {name} ({market})")
```
"""
return _client.make_request("SYMBOL_SEARCH", "", keywords=keywords)
@tool
def clear_api_cache() -> str:
"""
Clear all cached API data to force fresh requests.
Returns:
Confirmation message
"""
_client._data_cache.clear()
return "API cache cleared successfully."
@tool
def get_market_news_sentiment(
tickers: Optional[str] = None,
topics: Optional[str] = None,
time_from: Optional[str] = None,
time_to: Optional[str] = None,
sort: str = "LATEST",
limit: int = 50,
) -> Dict[str, Any]:
"""
Retrieve market news and sentiment data from Alpha Vantage.
This tool fetches live and historical market news with sentiment analysis from premier
news outlets worldwide, covering stocks, cryptocurrencies, forex, and various market topics.
Args:
tickers: Optional comma-separated list of symbols (e.g., 'AAPL,MSFT' or 'COIN,CRYPTO:BTC,FOREX:USD')
topics: Optional comma-separated list of news topics (e.g., 'technology,ipo')
Available topics: blockchain, earnings, ipo, mergers_and_acquisitions, financial_markets,
economy_fiscal, economy_monetary, economy_macro, energy_transportation, finance,
life_sciences, manufacturing, real_estate, retail_wholesale, technology
time_from: Optional start time in YYYYMMDDTHHMM format (e.g., '20220410T0130')
time_to: Optional end time in YYYYMMDDTHHMM format
sort: Sorting order - 'LATEST' (default), 'EARLIEST', or 'RELEVANCE'
limit: Maximum number of results to return (default: 50, max: 1000)
Returns:
Raw JSON data containing:
- feed: Array of news articles with title, summary, url, time_published, authors, and more
- sentiment scores for each article (if available)
- Error information if the request failed
Example:
```python
# Get latest news about Apple
apple_news = get_market_news_sentiment(tickers="AAPL")
# Get news articles at the intersection of technology and IPOs
tech_ipo_news = get_market_news_sentiment(topics="technology,ipo")
# Get Bitcoin news from a specific time period
btc_news = get_market_news_sentiment(
tickers="CRYPTO:BTC",
time_from="20230101T0000",
time_to="20230201T0000"
)
# Process the sentiment data
if "feed" in apple_news:
for article in apple_news["feed"]:
title = article.get("title", "No title")
sentiment = article.get("overall_sentiment_score", "N/A")
print(f"Article: {title} | Sentiment: {sentiment}")
```
"""
params = {
"function": "NEWS_SENTIMENT",
}
# Add optional parameters
if tickers:
params["tickers"] = tickers
if topics:
params["topics"] = topics
if time_from:
params["time_from"] = time_from
if time_to:
params["time_to"] = time_to
if sort:
params["sort"] = sort
if limit:
params["limit"] = limit
return _client.make_request("NEWS_SENTIMENT", "", **params)
"""Example functions to be used in the tools and called by the agent"""
class FinancialCalculatorTool(Tool):
"""
Performs various financial calculations, given structured data from a table.
Useful for calculating growth rates, financial ratios, and other key metrics.
The tool can directly perform calculations on the data for numerical answers.
"""
name = "financial_calculator"
description = """
Performs various financial calculations, given structured data from a table.
Useful for calculating growth rates, financial ratios, and other key metrics.
The tool can directly perform calculations on the data for numerical answers.
Input:
- `data` (str): A string representing table data (e.g., CSV, markdown table).
- `calculation_type` (str): The type of calculation to perform, such as 'growth_rate', 'profit_margin', 'debt_to_equity'.
- `year1`, `year2`, `metric` (str): Parameters for "growth", e.g., "2020", "2021", "Revenue".
- `year`, `revenue`, `netIncome`(str): Parameters for 'Profit_Margin', e.g. "2023", "10000", "1000".
- `year`, `totalDebt`, `totalEquity` (str): Parameters for 'Debt_To_Equity', e.g. "2023", "5000", "10000".
- `startYear`, `endYear`, `metric"(str): Parametes for "CAGR", e.g. "2020", "2025", "Revenue"
Output:
- `calculation_result` (str): The result of the financial calculation as a string, to two decimals points.
This ensures the agent can understand and utilize the output effectively.
"""
inputs = {
"data": {
"type": "string",
"description": "A string representing table data. Must be in CSV format with a header row.",
},
"calculation_type": {
"type": "string",
"description": "The type of calculation to perform. Must be one of the following exactly: 'growth_rate', 'profit_margin', 'debt_to_equity', 'CAGR'.",
},
"year1": {
"type": "string",
"description": "Year 1 for growth rate calculation, as a string.",
"nullable": True,
},
"metric": {
"type": "string",
"description": "Valid CSV Header to compare, for growth. MUST correspond to the appropriate header in dataset.",
"nullable": True,
},
"year2": {
"type": "string",
"description": "Year 2 for growth rate calculation, as a string. Make sure that is a valid CSV Header.",
"nullable": True,
},
"revenue": {
"type": "string",
"description": "Revenue for the fiscal year profit calculation (as a string).",
"nullable": True,
},
"netIncome": {
"type": "string",
"description": "Must be Valid Valid Net income for the fiscal year profit margin calculation, in string format",
"nullable": True,
},
"endYear": {
"type": "string",
"description": "Year 2 string for the CAGR function",
"nullable": True,
},
"year": {
"type": "string",
"description": "Valid Year",
"nullable": True,
},
"startYear": {
"type": "string",
"description": "Year 1, string for the CAGR function",
"nullable": True,
},
"totalAssets": {
"type": "string",
"description": "The Total assets data in string format",
"nullable": True,
},
"totalDebt": {
"type": "string",
"description": "The total debt data in string.",
"nullable": True,
},
"totalEquity": {
"type": "string",
"description": "The Total Shareholders Equity in string format",
"nullable": True,
},
}
output_type = "string"
def forward(
self,
data: str, # A string representing the data. Must be a valid CSV
calculation_type: str, # type of calculation you'd like to do with the data
year1: Optional[str] = None, # Year1, all string types
metric: Optional[str] = None, # metric, all string types
year2: Optional[str] = None, # Year2, all string types
revenue: Optional[str] = None, # Revenue, all string types
netIncome: Optional[str] = None, # Net income, all string types
endYear: Optional[str] = None, # Year 2 string for the CAGR function
year: Optional[str] = None, # Valid Year
startYear: Optional[str] = None, # Year 1, string for the CAGR function
totalAssets: Optional[str] = None, # The Total assets data in string format
totalDebt: Optional[str] = None, # The total debt data in string.
totalEquity: Optional[
str
] = None, # The Total Shareholders Equity in string format
) -> str:
"""
Performs the specified financial calculation.
Args:
data: A string representing the dat. Must be a valid CSV
calculation_type: type of calculation you'd like to do with the data
year1: Year1, all string types
year2: Year2, all string types
metric: metric, all string types
Returns:
A string representing the result of the calculation. If an error occurs, the string will start with "Error: "
"""
try:
df = pd.read_csv(io.StringIO(data))
except Exception as e:
return f"Error reading data: {e}. Ensure that the input provided is a valid csv, AND has headers (no comments or empty rows)."
try:
if calculation_type == "growth_rate":
if not (year1 and year2 and metric):
return "Error: Missing year1, year2, or metric for growth_rate calculation."
value1 = df.loc[df["Year"] == year1][metric].values[0]
value2 = df.loc[df["Year"] == year2][metric].values[0]
growth_rate = ((value2 - value1) / value1) * 100
return f"{growth_rate:.2f}%"
elif calculation_type == "profit_margin":
if not year or not revenue or not netIncome:
return "Error: Missing year for profit_margin calculation"
# revenue = df.loc[df['Year'] == year]['Revenue'].values[0] # Replace with your actual data columns
# net_income = df.loc[df['Year'] == year]['Net Income'].values[0] # This can also be EBIT or operating profit or whatever
profit_margin = (float(netIncome) / float(revenue)) * 100
return f"{profit_margin:.2f}%"
elif calculation_type == "debt_to_equity":
if not year or not totalDebt or not totalEquity:
return "Error: Missing year for debt_to_equity calculation"
# total_debt = df.loc[df['Year'] == year]['Total Debt'].values[0] # Could be short term or long term
# total_equity = df.loc[df['Year'] == year]['Total Equity'].values[0] # Could be share holders equity?
debt_to_equity = float(totalDebt) / float(totalEquity)
return f"{debt_to_equity:.2f}"
elif calculation_type == "CAGR":
if not (startYear and endYear and metric):
return "Error: Missing startYear, endYear, or metric for CAGR calculation."
try: # Make the CSV valid
start_value = float(
df[df["Year"] == startYear][metric].values[0]
) # float(start_value) #df[df.columns[1]] #["Start Value"].values[0]
end_value = float(
df[df["Year"] == endYear][metric].values[0]
) # float(end_value) # float(raw[0]) #df[df.columns[1]] #["End Value"].values[0]# CSV
except Exception as exception:
return f"start value {df[df['Year'] == startYear][metric].values[0]} endvalue {df[df['Year'] == endYear][metric].values[0]}. start and end values are not valid headers! Ensure CSV Headers are there, and they're valid. OriginalException{exception}"
try: # check to confirm the calculations work by converting them to float
n = int(endYear) - int(startYear)
cagr = (end_value / start_value) ** (1 / n) - 1
return f"{cagr:.2f}" # f"EndValue {endYear2:.2f} Startvalue {startYear2:.2f}"
except Exception:
return f"start year {startYear} end year {endYear} Startvalue {start_value} end value {end_value}. Year calcs invalid! Invalid CSV"
else:
return f"Error: Unsupported Calculation Type: {calculation_type}. Consider growth_rate, profit_margin, debt_to_equity, CAGR."
except Exception as e:
return f"Error performing calculation: {e}"
class DataVisualizationTool(Tool):
"""
Generates visualizations (charts, graphs) from structured data to help identify trends.
Be thoughtful about the data AND type of graph: they must match.
You CANNOT import things other than csv, so make sure to follow the instructions.
"""
name = "data_visualization"
description = """
Generates visualizations (charts, graphs) from structured data to help identify trends. Be thoughtful about the data AND type of graph: they must match. You CANNOT import things other than csv, so make sure to follow the instructions.
Input:
- `data` (str): A valid CSV string, that represents values to graph: MUST start with a HEADER row, then be followed by valid csv syntax
- `chart_type` (str): The type of chart/graph to generate, MUST be one of: 'line', 'bar', 'scatter'.
- `x_axis_label` (str): Label for the x axis. If unsure, set as "years"
- `y_axis_label` (str): Label for the y axis. If unsure, set as "net income"
Output:
- `plot_string` (str): A verbal description of the plot, especially its overall trend. A short trend is sufficient.
"""
inputs = {
"data": {
"type": "string",
"description": "CSV data representing a time series: Start this with headers followed by values!!",
},
"chart_type": {
"type": "string",
"description": "Type of chart to generate (e.g., MUST be one of 'line', 'bar', 'scatter').",
},
"x_axis_label": {
"type": "string",
"description": "Label of x-axis, such as 'years' or 'quarters'",
},
"y_axis_label": {
"type": "string",
"description": "Label of y-axis, such as 'net income' or 'revenue'",
},
}
output_type = "string"
def forward(
self, data: str, chart_type: str, x_axis_label: str, y_axis_label: str
) -> str:
"""
Perform chart visuals
Args:
data (str): string CSV in the correct format
chart_type (str): one of scatter, line, bar
x_axis_label (str): label
y_axis_label (str): label
Returns:
str: A verbal description of the plot, especially its overall trend.
"""
if not data:
return "Error: No data provided."
if not chart_type:
return "Error: No chart."
if not x_axis_label:
return "Error: No x-axis label provided."
if not y_axis_label:
return "Error: No y-axis label provided."
try:
df = pd.read_csv(io.StringIO(data))
except Exception as e:
return f"Problem building data {data}: {e}"
if len(df.columns) < 2:
return "Error: Data must have at least two columns."
try:
plt.figure(figsize=(10, 6)) # Adjust the figure size for better readability
if chart_type == "line":
plt.xlabel(x_axis_label)
plt.ylabel(y_axis_label)
plt.plot(
df[df.columns[0]], df[df.columns[1]]
) # [df.columns[0]], df[df.columns[1]]
elif chart_type == "bar":
plt.ylabel(y_axis_label)
plt.xlabel(x_axis_label)
plt.bar(df[df.columns[0]], df[df.columns[1]]) # .values[0]
elif chart_type == "scatter":
plt.ylabel(y_axis_label)
plt.xlabel(x_axis_label)
plt.scatter(df[df.columns[0]], df[df.columns[1]]) # .values[0]
else:
raise ValueError(f"Unsupported chart type: {chart_type}")
chart_summary = f"Chart generated, which shows the {chart_type} of {df.columns[1]} with respect to {df.columns[0]}. "
plt.title(y_axis_label + " vs. " + x_axis_label) # What we're graphing
# plt.text(80000000000, 80000000000, chart_summary) # Show the chart summary
plt.show() # actually show the chart to the user, as above shows matplotlib backend
return chart_summary
except Exception as e:
return f"Problem with chart plotting: {e}" # chart_type = None
class TrendAnalysisTool(Tool):
"""
You can retrieve year over year increase percentages for a specific category by setting the category.
Please provide a valid CSV. MAKE SURE headers = columns, and that is in the correct format.
"""
name = "trend_analysis"
description = """
You can retrieve year over year increase percentages for a specific category by setting the category. Please provide a valid CSV. MAKE SURE headers = columns, and that is in the correct format.
"""
inputs = {
"data": {
"type": "string",
"description": "A string representing the data (e.g., CSV format) - MUST HAVE HEADERS. MUST specify all colums",
},
"category": {
"type": "string",
"description": "The category we want to compare, such as revenue. Check to know WHAT the name is!!",
},
}
output_type = "string"
def forward(self, data: str, category: str) -> str:
"""Make year over year increases for a given csv
Args:
data: all the data
category: the category we want to compare, such as revenue
"""
try:
df = pd.read_csv(io.StringIO(data))
except Exception as e:
return f"Error reading data: {e}. Ensure valid CSV, and headers are present: {e}!!"
try:
df["YoY Change"] = df[category].pct_change() * 100
df["YoY Change"] = df["YoY Change"].map("{:.2f}%".format)
change_description = df.to_string() #
return change_description
except Exception as e:
return f"Error with trend analysis: {e}. Check the name or data!!"
# ###########################
# # Example loading the tools:
# ###########################
# # def load_finance_tools():
# # finance_tools = [
# # get_stock_quote_data,
# # get_company_overview_data,
# # get_earnings_data,
# # get_income_statement_data,
# # get_balance_sheet_data,
# # get_cash_flow_data,
# # get_time_series_daily,
# # search_symbols,
# # DataVisualizationTool(),
# # FinancialCalculatorTool(),
# # TrendAnalysisTool()
# # ]
# # return finance_tools
def load_finance_tools():
"""Initialize and return finance tools for data retrieval and analysis.
You MUST put all the correct tools in here, or it will not run.
"""
finance_tools = []
# finance_tools_names = [] # was getting errors on loading
def safe_tool_load(tool_func, tool_name):
"""Helper to safely load and append a finance tool."""
try:
finance_tools.append(tool_func)
# finance_tools_names.append(tool_func.__name__) # was getting errors on loading
logging.info(f"Loaded {tool_name} tool successfully")
except Exception as e:
logging.error(f"Failed to load tool {tool_name}: {e}")
logging.error(traceback.format_exc()) # Print the stack trace
# Financial calculation tools first
safe_tool_load(DataVisualizationTool(), "DataVisualizationTool")
safe_tool_load(FinancialCalculatorTool(), "FinancialCalculatorTool")
safe_tool_load(TrendAnalysisTool(), "TrendAnalysisTool")
# Raw data retrieval tools last
safe_tool_load(get_stock_quote_data, "get_stock_quote_data")
safe_tool_load(get_company_overview_data, "get_company_overview_data")
safe_tool_load(get_earnings_data, "get_earnings_data")
safe_tool_load(get_income_statement_data, "get_income_statement_data")
safe_tool_load(get_balance_sheet_data, "get_balance_sheet_data")
safe_tool_load(get_cash_flow_data, "get_cash_flow_data")
safe_tool_load(get_time_series_daily, "get_time_series_daily")
safe_tool_load(search_symbols, "search_symbols")
safe_tool_load(get_market_news_sentiment, "get_market_news_sentiment")
return finance_tools
__all__ = [
"get_stock_quote_data",
"get_company_overview_data",
"get_earnings_data",
"get_income_statement_data",
"get_balance_sheet_data",
"get_cash_flow_data",
"get_time_series_daily",
"search_symbols",
"get_market_news_sentiment",
"DataVisualizationTool",
"FinancialCalculatorTool",
"TrendAnalysisTool",
]