File size: 28,236 Bytes
ec536e3
 
 
 
d1ae858
 
 
 
 
 
 
 
fa85a62
d1ae858
 
ada104f
 
 
f96d16f
d1ae858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ba5c3
c347de0
 
 
 
 
 
d4ba5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c347de0
d4ba5c3
d1ae858
d4ba5c3
 
 
 
 
 
 
 
c347de0
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ba5c3
 
c347de0
d4ba5c3
 
 
 
 
 
c347de0
d4ba5c3
 
c347de0
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ba5c3
 
c347de0
d4ba5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c347de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ba5c3
 
 
 
 
 
 
 
 
d1ae858
 
de4f577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada104f
 
 
d1ae858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de4f577
d1ae858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c347de0
 
 
 
 
 
 
 
 
 
 
 
d1ae858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de4f577
d1ae858
de4f577
 
 
 
 
d1ae858
de4f577
d1ae858
de4f577
 
 
 
 
d1ae858
 
 
 
 
c347de0
 
 
 
 
 
 
 
 
 
 
 
d1ae858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de4f577
 
 
e5ce70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de4f577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db5665
 
 
 
 
 
 
 
 
de4f577
 
 
 
 
 
 
 
d1ae858
 
fa85a62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Add warning suppression at the very beginning before any other imports
import warnings
warnings.filterwarnings("ignore", message="No secrets files found.*")

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import time
import os
import json
from datetime import datetime
from dotenv import load_dotenv
from enhanced_scraper import EnhancedRedditScraper

# Disable static file serving to prevent the warning
os.environ['STREAMLIT_SERVER_ENABLE_STATIC_SERVING'] = 'false'

# Note: Page configuration and session state initialization are handled in app.py

# Functions
def initialize_scraper(client_id, client_secret, user_agent):
    """Initialize the scraper with API credentials"""
    try:
        scraper = EnhancedRedditScraper(
            client_id=client_id,
            client_secret=client_secret,
            user_agent=user_agent
        )
        st.session_state.scraper = scraper
        return True
    except Exception as e:
        st.error(f"Failed to initialize scraper: {str(e)}")
        return False

def run_search(subreddits, keywords, limit, sort_by, include_comments, 
               include_selftext, min_score):
    """Run the search with provided parameters"""
    if not st.session_state.scraper:
        st.error("Scraper not initialized. Please set up API credentials first.")
        return False
    
    try:
        with st.spinner("Scraping Reddit..."):
            if len(subreddits) == 1:
                # Single subreddit search
                results = st.session_state.scraper.scrape_subreddit(
                    subreddit_name=subreddits[0],
                    keywords=keywords,
                    limit=limit,
                    sort_by=sort_by,
                    include_comments=include_comments,
                    include_selftext=include_selftext,
                    min_score=min_score
                )
                st.session_state.results = {subreddits[0]: results}
            else:
                # Multiple subreddit search
                results = st.session_state.scraper.search_multiple_subreddits(
                    subreddits=subreddits,
                    keywords=keywords,
                    limit=limit,
                    sort_by=sort_by,
                    include_comments=include_comments,
                    include_selftext=include_selftext,
                    min_score=min_score
                )
                st.session_state.results = results
            
            # Add to search history
            search_info = {
                'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                'subreddits': subreddits,
                'keywords': keywords,
                'total_results': sum(len(results) for results in st.session_state.results.values())
            }
            st.session_state.search_history.append(search_info)
            
            return True
    except Exception as e:
        st.error(f"Search failed: {str(e)}")
        return False

def filter_results(results, filters):
    """Apply filters to results"""
    filtered = {}
    
    for subreddit, posts in results.items():
        filtered_posts = []
        
        for post in posts:
            # Apply score filter
            if post['score'] < filters['min_score']:
                continue
                
            # Apply date filters if set
            if filters['date_from'] or filters['date_to']:
                post_date = datetime.strptime(post['created_utc'], '%Y-%m-%d %H:%M:%S')
                
                if filters['date_from'] and post_date < filters['date_from']:
                    continue
                if filters['date_to'] and post_date > filters['date_to']:
                    continue
            
            # Filter for posts with comments if requested
            if filters['show_only_with_comments'] and (
                'matching_comments' not in post or not post['matching_comments']):
                continue
                
            filtered_posts.append(post)
            
        filtered[subreddit] = filtered_posts
    
    return filtered

def create_data_visualization(results):
    """Create data visualizations based on results"""
    try:
        # Check if we have any data
        total_posts = sum(len(posts) for posts in results.values())
        if total_posts == 0:
            st.warning("No posts found matching your search criteria. Try adjusting your filters.")
            return
            
        # Combine all results
        all_posts = []
        for subreddit, posts in results.items():
            for post in posts:
                try:
                    post_copy = post.copy()
                    post_copy['subreddit'] = subreddit
                    all_posts.append(post_copy)
                except Exception as e:
                    st.warning(f"Skipping post due to error: {str(e)}")
        
        if not all_posts:
            st.warning("No data to visualize.")
            return
        
        # Create DataFrame with error handling
        try:
            df = pd.DataFrame(all_posts)
        except Exception as e:
            st.error(f"Could not create DataFrame: {str(e)}")
            return
        
        # Basic data validation
        if 'score' not in df.columns or 'subreddit' not in df.columns:
            missing_columns = []
            if 'score' not in df.columns:
                missing_columns.append('score')
            if 'subreddit' not in df.columns:
                missing_columns.append('subreddit')
            st.error(f"Required column(s) missing: {', '.join(missing_columns)}")
            st.write("Available columns:", df.columns.tolist())
            return
            
        # Create tabs for different visualizations
        viz_tab1, viz_tab2, viz_tab3 = st.tabs(["Score Distribution", "Posts by Subreddit", "Time Analysis"])
        
        # Score Distribution
        with viz_tab1:
            try:
                fig = px.histogram(df, x="score", color="subreddit", nbins=20,
                                  title="Distribution of Post Scores")
                fig.update_layout(
                    xaxis_title="Score (Upvotes)",
                    yaxis_title="Number of Posts",
                    legend_title="Subreddit"
                )
                # Add error handling with detailed output
                try:
                    st.plotly_chart(fig, use_container_width=True)
                except Exception as e:
                    st.error(f"Error rendering plotly chart: {str(e)}")
                    # More detailed error info
                    import traceback
                    st.code(traceback.format_exc())
                    st.write("Figure data type:", type(fig))
            except Exception as e:
                st.error(f"Error creating Score Distribution: {str(e)}")
                st.write("DataFrame head:", df.head())
        
        # Posts by Subreddit
        with viz_tab2:
            try:
                subreddit_counts = df['subreddit'].value_counts().reset_index()
                subreddit_counts.columns = ['subreddit', 'count']
                
                fig = px.bar(subreddit_counts, x='subreddit', y='count',
                             title="Number of Matching Posts by Subreddit")
                fig.update_layout(
                    xaxis_title="Subreddit",
                    yaxis_title="Number of Posts"
                )
                
                # Add error handling with detailed output
                try:
                    st.plotly_chart(fig, use_container_width=True)
                except Exception as e:
                    st.error(f"Error rendering plotly chart: {str(e)}")
                    # More detailed error info
                    import traceback
                    st.code(traceback.format_exc())
                    st.write("Figure data type:", type(fig))
            except Exception as e:
                st.error(f"Error creating Posts by Subreddit chart: {str(e)}")
                st.write("DataFrame unique subreddits:", df['subreddit'].unique())
        
        # Time Analysis
        with viz_tab3:
            try:
                if 'created_utc' in df.columns:
                    try:
                        # Handle different date formats
                        df['created_date'] = pd.to_datetime(df['created_utc'], errors='coerce')
                        
                        # Check if conversion was successful
                        if df['created_date'].isna().all():
                            st.warning("Could not parse date formats properly.")
                            return
                            
                        df['hour_of_day'] = df['created_date'].dt.hour
                        
                        fig = px.histogram(df, x="hour_of_day", nbins=24,
                                          title="Posts by Hour of Day")
                        fig.update_layout(
                            xaxis_title="Hour of Day (UTC)",
                            yaxis_title="Number of Posts",
                            xaxis=dict(tickmode='linear', tick0=0, dtick=1)  # Ensure all hours are shown
                        )
                        
                        # Add error handling with detailed output
                        try:
                            st.plotly_chart(fig, use_container_width=True)
                        except Exception as e:
                            st.error(f"Error rendering plotly chart: {str(e)}")
                            # More detailed error info
                            import traceback
                            st.code(traceback.format_exc())
                            st.write("Figure data type:", type(fig))
                    except Exception as e:
                        st.error(f"Error processing dates: {str(e)}")
                else:
                    st.warning("No date information available for Time Analysis.")
            except Exception as e:
                st.error(f"Error creating Time Analysis: {str(e)}")
                
    except Exception as e:
        st.error(f"Data visualization failed: {str(e)}")

def main():
    # Suppress the "No secrets files found" warning
    warnings.filterwarnings("ignore", message="No secrets files found.*")
    
    # Ensure session state variables are initialized
    if 'results' not in st.session_state:
        st.session_state['results'] = None
    if 'scraper' not in st.session_state:
        st.session_state['scraper'] = None
    if 'search_history' not in st.session_state:
        st.session_state['search_history'] = []
    if 'filters' not in st.session_state:
        st.session_state['filters'] = {
            'min_score': 0,
            'date_from': None,
            'date_to': None,
            'show_only_with_comments': False
        }
    
    # Header using Streamlit's native heading components
    st.title("Reddit Scraper")
    st.header("Data Collection Tool")
    
    # Sidebar for configuration
    with st.sidebar:
        st.header("Configuration")
        
        
        # Search Parameters
        st.subheader("Search Parameters")
        
        # Multiple subreddit input
        subreddits_input = st.text_area("Subreddits (one per line)", value="cuny\ncollegequestions")
        subreddits = [s.strip() for s in subreddits_input.split("\n") if s.strip()]
        
        # Keywords input
        keywords_input = st.text_area("Keywords (one per line)", value="question\nhelp\nconfused")
        keywords = [k.strip() for k in keywords_input.split("\n") if k.strip()]
        
        # Other parameters
        limit = st.slider("Number of posts to scan per subreddit", 10, 200, 50)
        sort_by = st.selectbox("Sort posts by", ["hot", "new", "top", "rising"], index=0)
        include_selftext = st.checkbox("Include post content in search", value=True)
        include_comments = st.checkbox("Include comments in search", value=True)
        min_score = st.slider("Minimum score (upvotes)", 0, 1000, 0)
        
        # Action buttons
        search_col, clear_col = st.columns(2)
        with search_col:
            search_button = st.button("Run Search", type="primary", use_container_width=True)
        with clear_col:
            clear_button = st.button("Clear Results", type="secondary", use_container_width=True)
    
    # Main interface tabs
    tab1, tab2, tab3, tab4, tab5 = st.tabs(["Results", "Visualizations", "Export", "History", "API Credentials"])
    
    # Handle Actions
    if clear_button:
        st.session_state.results = None
        st.rerun()
    
    if search_button:
        if not subreddits:
            st.error("Please enter at least one subreddit to search.")
        elif not keywords:
            st.error("Please enter at least one keyword to search.")
        else:
            success = run_search(
                subreddits=subreddits,
                keywords=keywords,
                limit=limit,
                sort_by=sort_by,
                include_comments=include_comments,
                include_selftext=include_selftext,
                min_score=min_score
            )
            if success:
                st.success(f"Search completed! Found results in {len(st.session_state.results)} subreddits.")
    
    # Tab 1: Results
    with tab1:
        if st.session_state.results:
            # Post-search filters
            st.markdown('<div class="card">', unsafe_allow_html=True)
            st.subheader("Filter Results")
            filter_col1, filter_col2, filter_col3 = st.columns(3)
            
            with filter_col1:
                st.session_state.filters['min_score'] = st.number_input(
                    "Minimum score", min_value=0, value=st.session_state.filters['min_score'])
            
            with filter_col2:
                st.session_state.filters['date_from'] = st.date_input(
                    "From date", value=None)
            
            with filter_col3:
                st.session_state.filters['date_to'] = st.date_input(
                    "To date", value=None)
            
            st.session_state.filters['show_only_with_comments'] = st.checkbox(
                "Show only posts with matching comments", 
                value=st.session_state.filters['show_only_with_comments'])
            
            apply_filters = st.button("Apply Filters")
            st.markdown('</div>', unsafe_allow_html=True)
            
            # Apply filters if requested
            if apply_filters:
                filtered_results = filter_results(st.session_state.results, st.session_state.filters)
            else:
                filtered_results = st.session_state.results
            
            # Show results for each subreddit
            total_posts = sum(len(posts) for posts in filtered_results.values())
            st.subheader(f"Search Results ({total_posts} posts found)")
            
            for subreddit, posts in filtered_results.items():
                with st.expander(f"r/{subreddit} - {len(posts)} posts", expanded=len(filtered_results) == 1):
                    if posts:
                        # Create a dataframe for easier viewing
                        df = pd.DataFrame([{
                            'Title': p['title'], 
                            'Score': p['score'],
                            'Comments': p['num_comments'],
                            'Date': p['created_utc'],
                            'URL': p['permalink']
                        } for p in posts])
                        
                        st.dataframe(df, use_container_width=True)
                        
                        # Show detailed post view
                        st.subheader("Post Details")
                        
                        # Handle the case where there are no posts or only one post
                        if len(posts) == 0:
                            st.info(f"No posts found to display details.")
                        elif len(posts) == 1:
                            # For a single post, no need for a slider
                            post_index = 0
                            st.info(f"Displaying the only post found.")
                        else:
                            # For multiple posts, create a slider
                            post_index = st.slider(f"Select post from r/{subreddit} ({len(posts)} posts)", 
                                                  0, len(posts)-1, 0)
                        
                        if len(posts) > 0:
                            post = posts[post_index]
                            
                            # Display post details in a card
                            st.markdown('<div class="card">', unsafe_allow_html=True)
                            st.markdown(f"### {post['title']}")
                            st.markdown(f"**Author:** u/{post['author']} | **Score:** {post['score']} | **Comments:** {post['num_comments']}")
                            st.markdown(f"**Posted on:** {post['created_utc']}")
                            st.markdown(f"**URL:** [{post['url']}]({post['url']})")
                            
                            if post['text']:
                                st.markdown("##### Post Content")
                                with st.container():
                                    show_content = st.checkbox("Show full content", key=f"content_{subreddit}_{post_index}")
                                    if show_content:
                                        st.text(post['text'])
                            
                            # Show matching comments if available
                            if 'matching_comments' in post and post['matching_comments']:
                                st.markdown(f"##### Matching Comments ({len(post['matching_comments'])})")
                                with st.container():
                                    show_comments = st.checkbox("Show comments", value=True, key=f"comments_{subreddit}_{post_index}")
                                    if show_comments:
                                        for i, comment in enumerate(post['matching_comments']):
                                            st.markdown(f"**u/{comment['author']}** ({comment['score']} points) - {comment['created_utc']}")
                                            st.text(comment['body'])
                                            if i < len(post['matching_comments']) - 1:
                                                st.divider()
                            
                            st.markdown('</div>', unsafe_allow_html=True)
                    else:
                        st.info(f"No posts found in r/{subreddit} matching the current filters.")
        else:
            st.info("Configure the search parameters and click 'Run Search' to begin.")
            
            # Show help for first-time users
            with st.expander("Help & Tips"):
                st.markdown("""
                ### Quick Start Guide
                
                1. Set up your **API credentials** in the API Credentials tab
                2. Enter **subreddits** to search (one per line)
                3. Enter **keywords** to filter posts (one per line)
                4. Adjust settings as needed
                5. Click **Run Search**
                
                ### Search Tips
                
                - Use specific keywords for targeted results
                - Search multiple related subreddits for better coverage
                - Enable comment search to find keywords in discussions
                - Use visualizations to identify trends
                - Export data for external analysis
                """)
    
    # Tab 2: Visualizations
    with tab2:
        if st.session_state.results:
            # Display loading state while generating visualizations
            with st.spinner("Generating visualizations..."):
                # Apply current filters to visualization data
                filtered_results = filter_results(st.session_state.results, st.session_state.filters)
                
                # Check if we have any results after filtering
                total_posts = sum(len(posts) for posts in filtered_results.values())
                if total_posts == 0:
                    st.warning("No posts match your current filters. Try adjusting your filter criteria.")
                else:
                    # Continue with visualization
                    create_data_visualization(filtered_results)
        else:
            st.info("Run a search to generate visualizations.")
    
    # Tab 3: Export
    with tab3:
        if st.session_state.results:
            st.subheader("Export Results")
            
            # Apply current filters
            filtered_results = filter_results(st.session_state.results, st.session_state.filters)
            
            # Format selection
            export_format = st.radio("Export format", ["CSV", "JSON"], horizontal=True)
            
            # Filename input
            timestamp = time.strftime("%Y%m%d_%H%M%S")
            default_filename = f"reddit_scrape_{timestamp}"
            filename = st.text_input("Filename (without extension)", value=default_filename)
            
            # Export button
            export_clicked = st.button("Export Data", type="primary")
            
            if export_clicked:
                try:
                    # Combine all results into a flat list for export
                    all_results = []
                    for subreddit, posts in filtered_results.items():
                        for post in posts:
                            post_copy = post.copy()
                            post_copy['subreddit'] = subreddit
                            all_results.append(post_copy)
                    
                    # Save results based on selected format
                    if export_format == "CSV":
                        # Convert to dataframe and save
                        df = pd.DataFrame(all_results)
                        
                        # Handle nested structures for CSV
                        if 'matching_comments' in df.columns:
                            df['matching_comments'] = df['matching_comments'].apply(
                                lambda x: json.dumps(x) if isinstance(x, list) else ''
                            )
                        
                        csv_file = f"{filename}.csv"
                        df.to_csv(csv_file, index=False)
                        
                        # Create download button
                        with open(csv_file, 'rb') as f:
                            st.download_button(
                                label="Download CSV",
                                data=f,
                                file_name=csv_file,
                                mime="text/csv"
                            )
                        st.success(f"Exported {len(all_results)} posts to {csv_file}")
                        
                    else:  # JSON
                        json_file = f"{filename}.json"
                        with open(json_file, 'w') as f:
                            json.dump(all_results, f, indent=2)
                        
                        # Create download button
                        with open(json_file, 'rb') as f:
                            st.download_button(
                                label="Download JSON",
                                data=f,
                                file_name=json_file,
                                mime="application/json"
                            )
                        st.success(f"Exported {len(all_results)} posts to {json_file}")
                        
                except Exception as e:
                    st.error(f"Export failed: {str(e)}")
        else:
            st.info("Run a search to export results.")
    
    # Tab 4: History
    with tab4:
        st.subheader("Search History")
        
        if st.session_state.search_history:
            for i, search in enumerate(reversed(st.session_state.search_history)):
                with st.expander(f"Search #{len(st.session_state.search_history)-i}: {search['timestamp']} ({search['total_results']} results)"):
                    st.markdown(f"**Subreddits:** {', '.join(search['subreddits'])}")
                    st.markdown(f"**Keywords:** {', '.join(search['keywords'])}")
                    st.markdown(f"**Results:** {search['total_results']} posts")
                    st.markdown(f"**Time:** {search['timestamp']}")
        else:
            st.info("No search history yet.")
            
    # Tab 5: API Credentials - Auto-closed by default
    with tab5:
        # Initialize session state for credentials if they don't exist
        if 'client_id' not in st.session_state:
            st.session_state.client_id = ""
        if 'client_secret' not in st.session_state:
            st.session_state.client_secret = ""
        if 'user_agent' not in st.session_state:
            st.session_state.user_agent = "RedditScraperApp/1.0"
        
        # In development environment, try to load from .env file for convenience
        # But don't do this in production to avoid credential leakage
        is_local_dev = not os.environ.get('SPACE_ID') and not os.environ.get('SYSTEM')
        if is_local_dev:
            load_dotenv()
            # Only load from env if session state is empty (first load)
            if not st.session_state.client_id:
                st.session_state.client_id = os.environ.get("REDDIT_CLIENT_ID", "")
            if not st.session_state.client_secret:
                st.session_state.client_secret = os.environ.get("REDDIT_CLIENT_SECRET", "")
            if st.session_state.user_agent == "RedditScraperApp/1.0":
                st.session_state.user_agent = os.environ.get("REDDIT_USER_AGENT", "RedditScraperApp/1.0")
        
        # Two columns for instructions and input
        cred_col1, cred_col2 = st.columns([1, 1])
        
        with cred_col1:
            st.markdown("""
            #### Getting Credentials:
            1. Go to [Reddit Developer Portal](https://www.reddit.com/prefs/apps)
            2. Click "Create App" or "Create Another App"
            3. Fill in details (name, description)
            4. Select "script" as application type
            5. Use "http://localhost:8000" as redirect URI
            6. Click "Create app"
            7. Note the client ID and secret
            
            #### Privacy Note
            Your credentials are never stored on any servers. For personal copies, 
            you can set them as Space secrets.
            """)
            
        with cred_col2:
            # Use session state for the input values
            client_id = st.text_input("Client ID", value=st.session_state.client_id, key="client_id_input")
            client_secret = st.text_input("Client Secret", value=st.session_state.client_secret, type="password", key="client_secret_input")
            user_agent = st.text_input("User Agent", value=st.session_state.user_agent, key="user_agent_input")
            
            # Update session state when input changes
            st.session_state.client_id = client_id
            st.session_state.client_secret = client_secret
            st.session_state.user_agent = user_agent
            
            if st.button("Initialize API Connection", type="primary"):
                if initialize_scraper(client_id, client_secret, user_agent):
                    st.success("API connection established!")
                    # Set environment variables for the current session
                    os.environ["REDDIT_CLIENT_ID"] = client_id
                    os.environ["REDDIT_CLIENT_SECRET"] = client_secret
                    os.environ["REDDIT_USER_AGENT"] = user_agent

if __name__ == "__main__":
    main()