Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,7 @@ from pydantic import BaseModel
|
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import faiss
|
| 5 |
import pandas as pd
|
| 6 |
-
import
|
| 7 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModelForCausalLM
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
|
|
@@ -14,11 +13,6 @@ embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
| 14 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base")
|
| 15 |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")
|
| 16 |
|
| 17 |
-
# New: Load Local LLM for Dynamic Emotional Responses (Mistral/Llama)
|
| 18 |
-
response_model_name = "mistralai/Mistral-7B-Instruct"
|
| 19 |
-
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
|
| 20 |
-
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
|
| 21 |
-
|
| 22 |
# Load datasets
|
| 23 |
recommendations_df = pd.read_csv("treatment_recommendations.csv")
|
| 24 |
questions_df = pd.read_csv("symptom_questions.csv")
|
|
@@ -40,38 +34,13 @@ class ChatRequest(BaseModel):
|
|
| 40 |
class SummaryRequest(BaseModel):
|
| 41 |
chat_history: list # List of messages
|
| 42 |
|
| 43 |
-
|
| 44 |
@app.post("/get_questions")
|
| 45 |
def get_recommended_questions(request: ChatRequest):
|
| 46 |
-
"""Retrieve the most relevant diagnostic questions
|
| 47 |
-
|
| 48 |
-
# Step 1: Encode the input message for FAISS search
|
| 49 |
input_embedding = embedding_model.encode([request.message], convert_to_numpy=True)
|
| 50 |
distances, indices = question_index.search(input_embedding, 3)
|
| 51 |
-
|
| 52 |
-
# Step 2: Retrieve the top 3 relevant questions
|
| 53 |
retrieved_questions = [questions_df["Questions"].iloc[i] for i in indices[0]]
|
| 54 |
-
|
| 55 |
-
# Step 3: Use a local LLM to generate context-aware empathetic responses
|
| 56 |
-
prompt = f"""
|
| 57 |
-
User: {request.message}
|
| 58 |
-
|
| 59 |
-
You are a compassionate psychiatric assistant. Before asking a diagnostic question, respond empathetically.
|
| 60 |
-
|
| 61 |
-
Questions:
|
| 62 |
-
1. {retrieved_questions[0]}
|
| 63 |
-
2. {retrieved_questions[1]}
|
| 64 |
-
3. {retrieved_questions[2]}
|
| 65 |
-
|
| 66 |
-
Generate a conversational response that introduces each question naturally.
|
| 67 |
-
"""
|
| 68 |
-
|
| 69 |
-
inputs = response_tokenizer(prompt, return_tensors="pt")
|
| 70 |
-
output = response_model.generate(**inputs, max_length=300)
|
| 71 |
-
enhanced_responses = response_tokenizer.decode(output[0], skip_special_tokens=True).split("\n")
|
| 72 |
-
|
| 73 |
-
return {"questions": enhanced_responses}
|
| 74 |
-
|
| 75 |
|
| 76 |
@app.post("/summarize_chat")
|
| 77 |
def summarize_chat(request: SummaryRequest):
|
|
@@ -82,7 +51,6 @@ def summarize_chat(request: SummaryRequest):
|
|
| 82 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 83 |
return {"summary": summary}
|
| 84 |
|
| 85 |
-
|
| 86 |
@app.post("/detect_disorders")
|
| 87 |
def detect_disorders(request: SummaryRequest):
|
| 88 |
"""Detect psychiatric disorders from full chat history at the end."""
|
|
@@ -92,7 +60,6 @@ def detect_disorders(request: SummaryRequest):
|
|
| 92 |
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]]
|
| 93 |
return {"disorders": disorders}
|
| 94 |
|
| 95 |
-
|
| 96 |
@app.post("/get_treatment")
|
| 97 |
def get_treatment(request: SummaryRequest):
|
| 98 |
"""Retrieve treatment recommendations based on detected disorders."""
|
|
@@ -102,3 +69,4 @@ def get_treatment(request: SummaryRequest):
|
|
| 102 |
for disorder in detected_disorders
|
| 103 |
}
|
| 104 |
return {"treatments": treatments}
|
|
|
|
|
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import faiss
|
| 5 |
import pandas as pd
|
| 6 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
|
|
|
| 13 |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base")
|
| 14 |
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Load datasets
|
| 17 |
recommendations_df = pd.read_csv("treatment_recommendations.csv")
|
| 18 |
questions_df = pd.read_csv("symptom_questions.csv")
|
|
|
|
| 34 |
class SummaryRequest(BaseModel):
|
| 35 |
chat_history: list # List of messages
|
| 36 |
|
|
|
|
| 37 |
@app.post("/get_questions")
|
| 38 |
def get_recommended_questions(request: ChatRequest):
|
| 39 |
+
"""Retrieve the most relevant diagnostic questions."""
|
|
|
|
|
|
|
| 40 |
input_embedding = embedding_model.encode([request.message], convert_to_numpy=True)
|
| 41 |
distances, indices = question_index.search(input_embedding, 3)
|
|
|
|
|
|
|
| 42 |
retrieved_questions = [questions_df["Questions"].iloc[i] for i in indices[0]]
|
| 43 |
+
return {"questions": retrieved_questions}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
@app.post("/summarize_chat")
|
| 46 |
def summarize_chat(request: SummaryRequest):
|
|
|
|
| 51 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 52 |
return {"summary": summary}
|
| 53 |
|
|
|
|
| 54 |
@app.post("/detect_disorders")
|
| 55 |
def detect_disorders(request: SummaryRequest):
|
| 56 |
"""Detect psychiatric disorders from full chat history at the end."""
|
|
|
|
| 60 |
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]]
|
| 61 |
return {"disorders": disorders}
|
| 62 |
|
|
|
|
| 63 |
@app.post("/get_treatment")
|
| 64 |
def get_treatment(request: SummaryRequest):
|
| 65 |
"""Retrieve treatment recommendations based on detected disorders."""
|
|
|
|
| 69 |
for disorder in detected_disorders
|
| 70 |
}
|
| 71 |
return {"treatments": treatments}
|
| 72 |
+
|