Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,33 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
4 |
os.environ["HF_HOME"] = "/tmp"
|
5 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
-
import torch
|
11 |
-
import re
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
|
|
15 |
model_id = "misalsathsara/phi1.5-js-codegen"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
17 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
|
|
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model.to(device)
|
20 |
model.eval()
|
21 |
|
|
|
22 |
system_prompt = """
|
23 |
You are a smart javascript assistant that only generates only the best simple javascript functions without any comments like this:
|
24 |
function transform(row) {
|
@@ -49,13 +58,13 @@ class RequestData(BaseModel):
|
|
49 |
def generate_code(data: RequestData):
|
50 |
instruction = data.instruction
|
51 |
full_prompt = system_prompt + f"\n### Instruction:\n{instruction}\n\n### Response:\n"
|
52 |
-
|
53 |
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to(device)
|
54 |
-
|
55 |
with torch.no_grad():
|
56 |
output_ids = model.generate(
|
57 |
input_ids,
|
58 |
-
max_new_tokens=
|
59 |
temperature=0.3,
|
60 |
top_k=50,
|
61 |
top_p=0.95,
|
@@ -65,17 +74,12 @@ def generate_code(data: RequestData):
|
|
65 |
|
66 |
generated_text = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
67 |
|
68 |
-
# Only return JavaScript function — no extra text
|
69 |
# Extract only the JavaScript function that ends with return row;
|
70 |
match = re.search(r"function\s+transform\s*\([^)]*\)\s*{[^}]*return row;\s*}", generated_text, re.DOTALL)
|
71 |
if match:
|
72 |
clean_output = match.group(0).strip()
|
73 |
else:
|
74 |
-
# fallback: try to grab only up to "return row;"
|
75 |
fallback = generated_text.split("return row;")[0] + "return row;"
|
76 |
clean_output = fallback.strip()
|
77 |
-
|
78 |
-
from fastapi.responses import PlainTextResponse
|
79 |
-
return PlainTextResponse(clean_output)
|
80 |
-
|
81 |
|
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
import re
|
4 |
+
from fastapi import FastAPI
|
5 |
+
from fastapi.responses import PlainTextResponse
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
+
# Set cache directory for HF Spaces
|
10 |
os.environ["HF_HOME"] = "/tmp"
|
11 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
|
12 |
|
13 |
+
# Optional: speed up inference on CPU
|
14 |
+
torch.set_num_threads(1)
|
|
|
|
|
|
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
+
# Load model + tokenizer
|
19 |
model_id = "misalsathsara/phi1.5-js-codegen"
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
21 |
+
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
23 |
+
# Optional: Compile model if using PyTorch >= 2 (comment out if error)
|
24 |
+
# model = torch.compile(model)
|
25 |
+
|
26 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
model.to(device)
|
28 |
model.eval()
|
29 |
|
30 |
+
# JS assistant system prompt
|
31 |
system_prompt = """
|
32 |
You are a smart javascript assistant that only generates only the best simple javascript functions without any comments like this:
|
33 |
function transform(row) {
|
|
|
58 |
def generate_code(data: RequestData):
|
59 |
instruction = data.instruction
|
60 |
full_prompt = system_prompt + f"\n### Instruction:\n{instruction}\n\n### Response:\n"
|
61 |
+
|
62 |
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to(device)
|
63 |
+
|
64 |
with torch.no_grad():
|
65 |
output_ids = model.generate(
|
66 |
input_ids,
|
67 |
+
max_new_tokens=100, # Faster
|
68 |
temperature=0.3,
|
69 |
top_k=50,
|
70 |
top_p=0.95,
|
|
|
74 |
|
75 |
generated_text = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
76 |
|
|
|
77 |
# Extract only the JavaScript function that ends with return row;
|
78 |
match = re.search(r"function\s+transform\s*\([^)]*\)\s*{[^}]*return row;\s*}", generated_text, re.DOTALL)
|
79 |
if match:
|
80 |
clean_output = match.group(0).strip()
|
81 |
else:
|
|
|
82 |
fallback = generated_text.split("return row;")[0] + "return row;"
|
83 |
clean_output = fallback.strip()
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
return PlainTextResponse(clean_output)
|