File size: 5,364 Bytes
9726fac
1e2d981
9726fac
2332ba1
9726fac
 
 
034b4c3
1e2d981
2332ba1
 
 
 
 
 
 
 
 
1729f2d
2332ba1
 
 
 
1729f2d
2332ba1
 
 
 
1e2d981
 
2332ba1
6a34e6a
034b4c3
 
1e2d981
9702f0e
 
 
e5f6777
9726fac
 
 
 
 
1e2d981
 
 
9726fac
034b4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a28b27
034b4c3
 
 
2332ba1
9726fac
034b4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332ba1
9726fac
 
 
8a8d916
e5f6777
 
1e2d981
 
034b4c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import subprocess
import gradio as gr
from openai import OpenAI
import json

subprocess.Popen("bash /home/user/app/start.sh", shell=True)

client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="sk-local", timeout=600)

def handle_function_call(function_name, arguments):
    """Handle function calls from the model"""
    if function_name == "browser_search":
        # Implement your browser search logic here
        query = arguments.get("query", "")
        max_results = arguments.get("max_results", 5)
        return f"Search results for '{query}' (max {max_results} results): [Implementation needed]"

    elif function_name == "code_interpreter":
        # Implement your code interpreter logic here
        code = arguments.get("code", "")
        if not code:
            return "No code provided to execute."

        return f"Code interpreter results for '{code}': [Implementation needed]"

    return f"Unknown function: {function_name}"


def respond(
    message,
    history: list[tuple[str, str]] = [],
    system_message=None,
    max_tokens=None,
    temperature=0.7,
):
    messages = []
    if system_message:
        messages = [{"role": "system", "content": system_message}]

    for user, assistant in history:
        if user:
            messages.append({"role": "user", "content": user})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    try:
        stream = client.chat.completions.create(
            model="Deepseek-R1-0528-Qwen3-8B",
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            stream=True,
            tools=[
                {
                    "type": "function",
                    "function": {
                        "name": "browser_search",
                        "description": (
                            "Search the web for a given query and return the most relevant results."
                        ),
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "query": {
                                    "type": "string",
                                    "description": "The search query string.",
                                },
                                "max_results": {
                                    "type": "integer",
                                    "description": (
                                        "Maximum number of search results to return. "
                                        "If omitted the service will use its default."
                                    ),
                                    "default": 5,
                                },
                            },
                            "required": ["query"],
                        },
                    },
                },
                {
                    "type": "function",
                    "function": {
                        "name": "code_interpreter",
                        "description": (
                            "Execute Python code and return the results. "
                            "Can generate plots, perform calculations, and data analysis."
                        ),
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "code": {
                                    "type": "string",
                                    "description": "The Python code to execute.",
                                },
                            },
                            "required": ["code"],
                        },
                    },
                },
            ],
        )

        print("messages", messages)
        output = ""
        reasoning = ""
        function_calls_to_handle = []

        for chunk in stream:
            delta = chunk.choices[0].delta

            if hasattr(delta, "tool_calls") and delta.tool_calls:
                for tool_call in delta.tool_calls:
                    if tool_call.function:
                        function_calls_to_handle.append(
                            {
                                "name": tool_call.function.name,
                                "arguments": json.loads(tool_call.function.arguments),
                            }
                        )

            if hasattr(delta, "reasoning_content") and delta.reasoning_content:
                reasoning += delta.reasoning_content
            elif delta.content:
                output += delta.content

            yield f"*{reasoning}*\n{output}"

        if function_calls_to_handle:
            for func_call in function_calls_to_handle:
                func_result = handle_function_call(
                    func_call["name"], func_call["arguments"]
                )
                output += (
                    f"\n\n**Function Result ({func_call['name']}):**\n{func_result}"
                )
                yield output

    except Exception as e:
        print(f"[Error] {e}")
        yield "⚠️ Llama.cpp server error"


demo = gr.ChatInterface(respond)

if __name__ == "__main__":
    demo.launch(show_api=False)