Spaces:
Running
Running
File size: 12,975 Bytes
00b3d0f 2bc77eb 1641ca7 00b3d0f 2f4967b 00b3d0f b6b04c7 00b3d0f 89f676e 00b3d0f 89f676e 00b3d0f 762dded 3dafe6c 00b3d0f 3ad2b97 00b3d0f 3ad2b97 00b3d0f 3ad2b97 00b3d0f 3ad2b97 2f4967b 00b3d0f 762dded 00b3d0f 892da5a 00b3d0f 892da5a 00b3d0f 892da5a 00b3d0f 892da5a 00b3d0f 892da5a 00b3d0f 762dded 00b3d0f 3ad2b97 00b3d0f 2f4967b 00b3d0f 2f4967b 00b3d0f 2f4967b 00b3d0f 2f4967b ed06f94 00b3d0f ed06f94 00b3d0f 2f4967b 00b3d0f 61a6c42 00b3d0f 61a6c42 00b3d0f 61a6c42 00b3d0f 2f4967b 00b3d0f 2f4967b 00b3d0f 61a6c42 00b3d0f 892da5a 00b3d0f ed06f94 bc9e59e ed06f94 74b7f80 f46813a 00b3d0f f46813a ed06f94 00b3d0f f46813a ed06f94 00b3d0f f46813a 00b3d0f f46813a 00b3d0f f46813a 00b3d0f f46813a 00b3d0f 762dded 00b3d0f 61a6c42 00b3d0f 3dafe6c 00b3d0f 3dafe6c 00b3d0f 3dafe6c 00b3d0f 3dafe6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import torch
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import gradio as gr
import re
from rank_bm25 import BM25Okapi
import numpy as np
# Load models
model = SentenceTransformer("distilbert-base-multilingual-cased")
modela = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
# Load data
df = pd.read_csv("cleaned1.csv")
df2 = pd.read_csv("cleaned2.csv")
df3 = pd.read_csv("cleaned3.csv")
# Load pre-computed embeddings
embeddings = torch.load("embeddings1_1.pt")
embeddings2 = torch.load("embeddings2_1.pt")
embeddings3 = torch.load("embeddings3_1.pt")
embeddingsa = torch.load("embeddings1.pt")
embeddingsa2 = torch.load("embeddings2.pt")
embeddingsa3 = torch.load("embeddings3.pt")
# Extract questions and links
df_questions = df["question"].values
df_links = df["link"].values
df2_questions = df2["question"].values
df2_links = df2["link"].values
df3_questions = df3["question"].values
df3_links = df3["url"].values
# ARABIC_STOPWORDS = {
# 'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
# 'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
# 'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ูู', 'ููุง', 'ููู
', 'ู', 'ุฃู
', 'ุฅู'
# }
ARABIC_STOPWORDS = {
'ูู', 'ู
ู', 'ุฅูู', 'ุนู', 'ู
ุน', 'ูุฐุง', 'ูุฐู', 'ุฐูู', 'ุชูู',
'ุงูุชู', 'ุงูุฐู', 'ู
ุง', 'ูุง', 'ุฃู', 'ุฃู', 'ููู', 'ูุฏ', 'ุญูู
', 'ูุงู',
'ูุงู', 'ูุงูุช', 'ูููู', 'ุชููู', 'ูู', 'ููุง', 'ููู
', 'ู', 'ุฃู
', 'ุฅู',
'ุฑุถู', 'ุนูููุง', 'ุนููู
', 'ุนูู', 'ุนูููู
', 'ุตูู', 'ูุณูู
',
'ุณูุงู
', 'ุนููู', 'ุงูุฑุณูู', 'ุงููุจู', 'ุนููู', 'ุงูุณูุงู
', 'ุญุฏูุซ', 'ุงุญุงุฏูุซ'
}
def arabic_word_tokenize(text):
if not isinstance(text, str):
return []
# Remove diacritics
text = re.sub(r'[\u064B-\u065F\u0670]', '', text)
# Extract only Arabic words (length โฅ 2)
tokens = re.findall(r'[\u0600-\u06FF]{2,}', text)
return [t for t in tokens if t not in ARABIC_STOPWORDS]
def prepare_bm25_corpus(questions):
"""Prepare tokenized corpus for BM25"""
tokenized_corpus = []
for question in questions:
tokens = arabic_word_tokenize(question)
tokenized_corpus.append(tokens)
return tokenized_corpus
# Initialize BM25 models for each dataset
print("Initializing BM25 models...")
bm25_corpus1 = prepare_bm25_corpus(df_questions)
bm25_corpus2 = prepare_bm25_corpus(df2_questions)
bm25_corpus3 = prepare_bm25_corpus(df3_questions)
bm25_model1 = BM25Okapi(bm25_corpus1)
bm25_model2 = BM25Okapi(bm25_corpus2)
bm25_model3 = BM25Okapi(bm25_corpus3)
print("BM25 models initialized!")
corpus_length1 = len(df_questions)
corpus_length2 = len(df2_questions)
corpus_length3 = len(df3_questions)
def compute_bm25_scores(query, bm25_model,corpus_length):
"""Compute BM25 scores for a query"""
query_tokens = arabic_word_tokenize(query)
if not query_tokens:
return np.zeros(corpus_length)
scores = bm25_model.get_scores(query_tokens)
return scores
def compute_word_overlap(query, questions):
"""Enhanced word overlap computation"""
query_words = set(arabic_word_tokenize(query))
if len(query_words) == 0:
return [0.0] * len(questions)
overlaps = []
for q in questions:
q_words = set(arabic_word_tokenize(q))
if len(q_words) == 0:
overlaps.append(0.0)
continue
# Use Jaccard similarity (intersection over union)
intersection = len(query_words & q_words)
union = len(query_words | q_words)
jaccard = intersection / union if union > 0 else 0.0
# Also compute coverage (how much of query is matched)
coverage = intersection / len(query_words)
# Combine both: prioritize coverage but consider similarity
overlap_score = 0.7 * coverage + 0.3 * jaccard
overlaps.append(overlap_score)
return overlaps
def normalize_scores(scores):
"""Normalize scores to 0-1 range"""
scores = np.array(scores)
if np.max(scores) == np.min(scores):
return np.zeros_like(scores)
return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))
def predict(text):
print(f"Received query: {text}")
if not text or text.strip() == "":
return "No query provided"
# Semantic similarity scores
query_embedding = model.encode(text, convert_to_tensor=True)
query_embeddinga = modela.encode(text, convert_to_tensor=True)
# Cosine similarities (averaged from two models)
sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]) / 2
sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
# BM25 scores
bm25_scores1 = compute_bm25_scores(text, bm25_model1,corpus_length1)
bm25_scores2 = compute_bm25_scores(text, bm25_model2,corpus_length2)
bm25_scores3 = compute_bm25_scores(text, bm25_model3,corpus_length3)
# Word overlap scores
word_overlap1 = compute_word_overlap(text, df_questions)
word_overlap2 = compute_word_overlap(text, df2_questions)
word_overlap3 = compute_word_overlap(text, df3_questions)
# Normalize all scores for fair combination
norm_sim1 = normalize_scores(sim_scores1.cpu().numpy())
norm_sim2 = normalize_scores(sim_scores2.cpu().numpy())
norm_sim3 = normalize_scores(sim_scores3.cpu().numpy())
norm_bm25_1 = normalize_scores(bm25_scores1)
norm_bm25_2 = normalize_scores(bm25_scores2)
norm_bm25_3 = normalize_scores(bm25_scores3)
norm_word1 = normalize_scores(word_overlap1)
norm_word2 = normalize_scores(word_overlap2)
norm_word3 = normalize_scores(word_overlap3)
# Adaptive weighting based on query characteristics
query_words = arabic_word_tokenize(text)
query_length = len(query_words)
if query_length <= 4:
# Short queries: prioritize exact matches (BM25 + word overlap)
semantic_weight = 0.3
bm25_weight = 0.4
word_weight = 0.3
elif query_length <= 6:
# Medium queries: balanced approach
semantic_weight = 0.4
bm25_weight = 0.35
word_weight = 0.25
else:
# Long queries: prioritize semantic understanding
semantic_weight = 0.5
bm25_weight = 0.3
word_weight = 0.2
def create_combined_results(questions, links, norm_semantic, norm_bm25, norm_word):
combined_results = []
for i in range(len(questions)):
semantic_score = float(norm_semantic[i])
bm25_score = float(norm_bm25[i])
word_score = float(norm_word[i])
# Enhanced scoring with BM25
combined_score = (semantic_weight * semantic_score +
bm25_weight * bm25_score +
word_weight * word_score)
# Boost results that perform well across multiple metrics
high_performance_count = sum([
semantic_score > 0.7,
bm25_score > 0.7,
word_score > 0.5
])
if high_performance_count >= 2:
boost = 0.1
elif high_performance_count >= 1:
boost = 0.05
else:
boost = 0.0
final_score = combined_score + boost
combined_results.append({
"question": questions[i],
"link": links[i],
"semantic_score": semantic_score,
"bm25_score": bm25_score,
"word_overlap_score": word_score,
"combined_score": final_score
})
return combined_results
# Create combined results for all datasets
combined1 = create_combined_results(df_questions, df_links, norm_sim1, norm_bm25_1, norm_word1)
combined2 = create_combined_results(df2_questions, df2_links, norm_sim2, norm_bm25_2, norm_word2)
combined3 = create_combined_results(df3_questions, df3_links, norm_sim3, norm_bm25_3, norm_word3)
# def get_diverse_top_results(combined_results, top_k=5):
# """Get diverse top results using multiple ranking strategies"""
# # Sort by combined score and get top candidates
# by_combined = sorted(combined_results, key=lambda x: x["combined_score"], reverse=True)
# top_combined = by_combined[:3]
# # Get questions from top combined to avoid duplicates
# used_questions = {item["question"] for item in top_combined}
# # Add best BM25 result not already included
# by_bm25 = sorted(combined_results, key=lambda x: x["bm25_score"], reverse=True)
# bm25_pick = None
# for item in by_bm25:
# if item["question"] not in used_questions:
# bm25_pick = item
# break
# # Add best semantic result not already included
# by_semantic = sorted(combined_results, key=lambda x: x["semantic_score"], reverse=True)
# semantic_pick = None
# if bm25_pick:
# used_questions.add(bm25_pick["question"])
# for item in by_semantic:
# if item["question"] not in used_questions:
# semantic_pick = item
# break
# # Combine results
# final_results = top_combined.copy()
# if bm25_pick:
# final_results.append(bm25_pick)
# if semantic_pick:
# final_results.append(semantic_pick)
# return final_results[:top_k]
def get_diverse_top_results(combined_results, top_k=15):
"""Get diverse top results using multiple ranking strategies with BM25 threshold"""
# First, check if any results have BM25 score > 0.1
has_good_bm25 = any(item["bm25_score"] > 0.1 for item in combined_results)
if has_good_bm25:
# Filter results to only include those with BM25 > 0.1
filtered_results = [item for item in combined_results if item["bm25_score"] > 0.1]
else:
# If all BM25 scores are <= 0.1, use all results
filtered_results = combined_results
# Sort by combined score and get top candidates from filtered results
by_combined = sorted(filtered_results, key=lambda x: x["combined_score"], reverse=True)
top_combined = by_combined[:top_k-5]
# Get questions from top combined to avoid duplicates
used_questions = {item["question"] for item in top_combined}
# Add best BM25 result not already included (from filtered results)
by_bm25 = sorted(filtered_results, key=lambda x: x["bm25_score"], reverse=True)
bm25_pick = None
for item in by_bm25:
if item["question"] not in used_questions:
bm25_pick = item
break
# Add best semantic result not already included (from filtered results)
by_semantic = sorted(filtered_results, key=lambda x: x["semantic_score"], reverse=True)
semantic_pick = None
if bm25_pick:
used_questions.add(bm25_pick["question"])
for item in by_semantic:
if item["question"] not in used_questions:
semantic_pick = item
break
# Combine results
final_results = top_combined.copy()
if bm25_pick:
final_results.append(bm25_pick)
if semantic_pick:
final_results.append(semantic_pick)
return final_results[:top_k]
# Get top results for each dataset
top1 = get_diverse_top_results(combined1)
top2 = get_diverse_top_results(combined2)
top3 = get_diverse_top_results(combined3)
results = {
"top2": top2,
"top3": top3,
"top1": top1,
"query_info": {
"query_length": query_length,
"weights": {
"semantic": semantic_weight,
"bm25": bm25_weight,
"word_overlap": word_weight
}
}
}
return results
title = "Enhanced Search with BM25"
iface = gr.Interface(
fn=predict,
inputs=[gr.Textbox(label="Search Query", lines=3)],
outputs='json',
title=title,
description="Arabic text search using combined semantic similarity, BM25, and word overlap scoring"
)
if __name__ == "__main__":
iface.launch()
|