File size: 6,577 Bytes
70fb032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab55629
 
70fb032
 
 
ab55629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70fb032
 
 
ab55629
 
 
 
70fb032
 
ab55629
 
70fb032
 
ab55629
 
 
 
 
 
 
70fb032
ab55629
 
70fb032
 
 
 
 
 
 
ab55629
 
 
 
 
 
70fb032
 
 
 
 
 
ab55629
 
 
 
 
 
 
 
 
 
 
 
 
 
70fb032
 
ab55629
 
 
 
 
 
70fb032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab55629
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import numpy as np
import io
import PIL.Image as Image
from rembg import remove
from PIL import ImageDraw, ImageFont
import textwrap

# Function to remove background and place text behind person
def text_behind_image(input_image, text, text_color, font_size, text_opacity):
    if input_image is None:
        return None
    
    # Convert color hex to RGB
    try:
        r = int(text_color[1:3], 16)
        g = int(text_color[3:5], 16)
        b = int(text_color[5:7], 16)
        text_color_rgb = (r, g, b)
    except:
        text_color_rgb = (255, 255, 255)  # Default to white
    
    try:
        # Open the image
        img = Image.fromarray(input_image)
        
        # Get dimensions
        width, height = img.size
        
        # Create a new image with white background (this will be the canvas)
        background = Image.new('RGBA', (width, height), (255, 255, 255, 255))
        
        # Create a drawing context for the text
        draw = ImageDraw.Draw(background)
        
        # Determine font size (relative to image size)
        font_size = int(min(width, height) * (font_size / 100))  # Convert percentage to actual size
        if font_size < 10:  # Ensure font is at least 10 pixels
            font_size = 10
        
        # Try to load a nice font, fall back to default if not available
        try:
            # Try different common fonts
            font_paths = [
                "arial.ttf", 
                "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
                "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
            ]
            font = None
            for font_path in font_paths:
                try:
                    font = ImageFont.truetype(font_path, font_size)
                    break
                except:
                    continue
                    
            if font is None:
                font = ImageFont.load_default()
        except:
            font = ImageFont.load_default()
        
        # Prepare the text - make it ALL CAPS for better visual impact
        text = text.upper()
        
        # Fill the entire background with repeating text pattern
        # Word wrap the text to fit within the image width
        margin = 20
        max_chars = max(10, int(width / (font_size/2)) - 2*margin)
        wrapper = textwrap.TextWrapper(width=max_chars)
        word_list = wrapper.wrap(text)
        
        # If text is too short, repeat it to fill the background
        if len(word_list) == 1 and len(text) < 10:
            repeated_text = (text + " ") * 10
            word_list = []
            for i in range(0, height, font_size + 5):
                word_list.append(repeated_text)
        
        # Calculate text block height
        line_spacing = int(font_size * 1.2)
        text_height = len(word_list) * line_spacing
        
        # Position text in the center
        y_text = (height - text_height) // 2
        
        # Draw text with specified opacity
        for line in word_list:
            # Get line width
            try:
                line_width = font.getbbox(line)[2] - font.getbbox(line)[0]
            except:
                # Fallback method to estimate width
                line_width = len(line) * (font_size // 2)
                
            # Center the line
            x_text = (width - line_width) // 2
            
            # Draw text with specified opacity
            text_color_with_opacity = text_color_rgb + (int(text_opacity * 255),)
            draw.text((x_text, y_text), line, font=font, fill=text_color_with_opacity)
            y_text += line_spacing
        
        # Ensure the text is very visible by drawing it multiple times with different Y positions
        if len(word_list) < 5:
            for offset in [-line_spacing*2, line_spacing*2]:
                y_text = (height - text_height) // 2 + offset
                for line in word_list:
                    try:
                        line_width = font.getbbox(line)[2] - font.getbbox(line)[0]
                    except:
                        line_width = len(line) * (font_size // 2)
                    x_text = (width - line_width) // 2
                    draw.text((x_text, y_text), line, font=font, fill=text_color_with_opacity)
                    y_text += line_spacing
        
        # Remove background from the original image to get the person silhouette
        # Use the u2net_human_seg model specifically for better human segmentation
        try:
            person_img = remove(img, model_name="u2net_human_seg")
        except:
            # Fallback to default model if human_seg not available
            person_img = remove(img)
        
        # Composite the images: text in background, then person on top
        final_image = Image.alpha_composite(background.convert('RGBA'), person_img.convert('RGBA'))
        
        # Convert back to RGB for display
        return np.array(final_image.convert('RGB'))
    
    except Exception as e:
        print(f"Error processing image: {e}")
        return input_image  # Return original image on error

# Create Gradio interface
with gr.Blocks(title="Text Behind Image") as demo:
    gr.Markdown("# Text Behind Image")
    gr.Markdown("Upload an image with a person and add text behind them")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Upload Image", type="numpy")
            text_input = gr.Textbox(label="Text to place behind", placeholder="Enter text here...")
            
            with gr.Row():
                text_color = gr.ColorPicker(label="Text Color", value="#FFFFFF")
                font_size = gr.Slider(label="Font Size (%)", minimum=1, maximum=30, value=10, step=1)
                text_opacity = gr.Slider(label="Text Opacity", minimum=0.1, maximum=1.0, value=0.8, step=0.1)
            
            submit_btn = gr.Button("Generate", variant="primary")
        
        with gr.Column():
            output_image = gr.Image(label="Result", type="numpy")
    
    submit_btn.click(
        fn=text_behind_image,
        inputs=[input_image, text_input, text_color, font_size, text_opacity],
        outputs=output_image
    )
    
    gr.Markdown("## How it works")
    gr.Markdown("1. Upload an image with a person")
    gr.Markdown("2. Enter the text you want to place behind the person")
    gr.Markdown("3. Customize text color, size, and opacity")
    gr.Markdown("4. Click 'Generate' to create your image")

# Launch the app
demo.launch()