
UNIT 2 
Naive Bayes Classifiers



Naive Bayes Classifiers

Naive Bayes classifiers are supervised machine learning algorithms 
used for classification tasks, based on Bayes’ Theorem to find 
probabilities. 

Bayes' Theorem is a fundamental concept in probability theory that 
describes how to update the probabilities of hypotheses as new 
evidence becomes available. It's a way to formally incorporate new 
information into your beliefs about the likelihood of events.

https://www.geeksforgeeks.org/bayes-theorem/


Key Features of Naive Bayes Classifiers

• The main idea behind the Naive Bayes classifier is to use Bayes’ Theorem to 
classify data based on the probabilities of different classes given the 
features of the data. It is used mostly in high-dimensional text classification.

• It is named as “Naive” because it assumes the presence of one feature 
does not affect other features.

• The “Bayes” part of the name refers to  for the basis in Bayes’ Theorem.



• The Naive Bayes Classifier is a simple probabilistic classifier and it has 
very few number of parameters which are used to build the ML 
models that can predict at a faster speed than other classification 
algorithms.

• It is a probabilistic classifier because it assumes that one feature in 
the model is independent of existence of another feature. Each 
feature contributes to the predictions with no relation between each 
other.

• Naïve Bayes Algorithm is used in situations like spam filtration, 
Sentimental analysis, classifying articles and many more.



Sample Dataset that describes the weather conditions for playing a game of golf. Given the 
weather conditions, each tuple classifies the conditions as fit(“Yes”) or unfit(“No”) for playing golf.

The dataset is divided into two 
parts, namely, feature matrix 
and the response vector.
Feature matrix contains all the 
vectors(rows) of dataset in which 
each vector consists of the value 
of dependent features. In the 
dataset, features are ‘Outlook’, 
‘Temperature’, ‘Humidity’ and 
‘Windy’.
Response vector contains the 
value of class variable(prediction 
or output) for each row of 
feature matrix. In given dataset, 
the class variable name is ‘Play 
golf’.

Outlook Temperature Humidity Windy Play Golf

0 Rainy Hot High False No

1 Rainy Hot High True No

2 Overcast Hot High False Yes

3 Sunny Mild High False Yes

4 Sunny Cool Normal False Yes

5 Sunny Cool Normal True No

6 Overcast Cool Normal True Yes

7 Rainy Mild High False No

8 Rainy Cool Normal False Yes

9 Sunny Mild Normal False Yes

10 Rainy Mild Normal True Yes

11 Overcast Mild High True Yes

12 Overcast Hot Normal False Yes

13 Sunny Mild High True No



Assumption of Naive Bayes

The fundamental Naive Bayes assumption is that each feature makes a/an:

• Feature independence: This means that when we are trying to classify something, we assume that 
each feature (or piece of information) in the data does not affect any other feature.

• Continuous features are normally distributed: If a feature is continuous, then it is assumed to be 
normally distributed within each class.

• Discrete features have multinomial distributions: If a feature is discrete, then it is assumed to have 
a multinomial distribution within each class.

• Features are equally important: All features are assumed to contribute equally to the prediction of 
the class label.

• No missing data: The data should not contain any missing values.



Naive Bayes is a classification algorithm that predicts the probability of a data point 
belonging to a particular class given its features. 
It's often used for text classification (e.g., spam filtering, sentiment analysis),
 but it can also be applied to other types of data.   

Bayes' Theorem in Naive Bayes:

Example: classify a data point x into one of several classes C. Bayes' Theorem :

P(C|x) = [P(x|C) * P(C)] / P(x) 
Where:

•P(C|x): The posterior probability of the data point x belonging to class C. This is what we want to calculate.   
•P(x|C): The likelihood of observing the features x given that the data point belongs to class C.   
•P(C): The prior probability of class C.   
•P(x): The probability of observing the features x. This acts as a normalizing constant. 



 
 
 

The "Naive" Assumption:

The problem with directly using this formula is that calculating

 P(x|C) can be very difficult, especially when the data point x has many features. This is where the "naive" 
assumption comes in.

Naive Bayes assumes that the features are conditionally independent given the class. 
It assumes that the presence or absence of one feature does not affect 
the presence or absence of another feature, given that we know the class.   

 
 
 

P(x|C) = P(x₁|C) * P(x₂|C) * ... * P(xₙ|C) 
Where x₁, x₂, ..., xₙ are the individual features of x.



Apply Bayes’ theorem based on Sample Dataset



Types of Naive Bayes Model

There are three types of Naive Bayes Model :

• Gaussian Naive Bayes-continuous values associated with each feature are assumed to be 
distributed according to a Gaussian distribution. A Gaussian distribution is also called Normal 
distribution When plotted, it gives a bell shaped curve which is symmetric about the mean of 
the feature values 

• Multinomial Naive Bayes-used when features represent the frequency of terms (such as word 
counts) in a document. It is commonly applied in text classification, where term frequencies are 
important.

• Bernoulli Naive Bayes-deals with binary features, where each feature indicates whether a word 
appears or not in a document. It is suited for scenarios where the presence or absence of terms 
is more relevant than their frequency. Both models are widely used in document classification 
tasks

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution


Specific example of classification using Naive Bayes. 

Simple text classification problem.

• Problem:
• We want to classify emails as either "spam" or "not spam" based on the words 

they contain.

• Data:
• We have the following training data 
• Spam: "free money win prize", "urgent claim your reward", "discount offer limited 

time“
• Not Spam: "meeting tomorrow at 10am", "project update discussion", "lunch 

together after work"



Steps:

1.Vocabulary: Create a vocabulary of all unique words in the training data:

{"free", "money", "win", "prize", "urgent", "claim", "your", "reward", "discount", 
"offer", "limited", "time", "meeting", "tomorrow", "at", "10am", "project", "update", 
"discussion", "lunch", "together", "after", "work"}

2. Calculate Prior Probabilities: Calculate the probability of each class:

• P(Spam) = 3/6 = 0.5 (3 spam emails out of 6 total)

• P(Not Spam) = 3/6 = 0.5

3. Calculate Likelihood Probabilities: Calculate the probability of each word given each 
class. Use Laplace smoothing (add-1 smoothing) to avoid probabilities of zero.  This 
means we add 1 to the count of each word in each class and add the size of the 
vocabulary to the denominator.



Spam:
• P(free|Spam) = (1+1)/(12+22) = 2/34 (Word "free" appears once in spam 

emails +1 / total words in spam emails + vocabulary size)
• P(money|Spam) = 2/34
• P(win|Spam) = 2/34
• P(prize|Spam) = 2/34
• P(urgent|Spam) = 2/34
• P(claim|Spam) = 2/34
• P(your|Spam) = 2/34
• P(reward|Spam) = 2/34
• P(discount|Spam) = 2/34
• P(offer|Spam) = 2/34
• P(limited|Spam) = 2/34
• P(time|Spam) = 2/34
• ... (words not in spam emails have probability 1/34)



Not Spam:
• P(meeting|Not Spam) = 2/34
• P(tomorrow|Not Spam) = 2/34
• P(at|Not Spam) = 2/34
• P(10am|Not Spam) = 2/34
• P(project|Not Spam) = 2/34
• P(update|Not Spam) = 2/34
• P(discussion|Not Spam) = 2/34
• P(lunch|Not Spam) = 2/34
• P(together|Not Spam) = 2/34
• P(after|Not Spam) = 2/34
• P(work|Not Spam) = 2/34
• ... (words not in not spam emails have probability 1/34)



4. Classify a New Email:  Example :classify the email: "free lunch offer"

Calculate Posterior Probabilities:
• P(Spam|Email) ∝ P(Email|Spam) * P(Spam) (∝ means proportional to; we can ignore the denominator 

P(Email) as it's the same for both classes) = P(free|Spam) * P(lunch|Spam) * P(offer|Spam) * P(Spam) = 
(2/34) * (1/34) * (2/34) * 0.5 ≈ 0.000086

• P(Not Spam|Email) ∝ P(Email|Not Spam) * P(Not Spam) = P(free|Not Spam) * P(lunch|Not Spam) * 
P(offer|Not Spam) * P(Not Spam) = (1/34) * (2/34) * (1/34) * 0.5 ≈ 0.000026

Prediction: Since P(Spam|Email) is greater than P(Not Spam|Email), we 
classify the email as spam.


