Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
d7016b3
1
Parent(s):
3e6810f
add app v1
Browse files
app.py
CHANGED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing as mp
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
from functools import partial
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import traceback
|
| 7 |
+
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def model_worker(input_queue, output_queue, device_id):
|
| 11 |
+
device = None
|
| 12 |
+
if device_id is not None:
|
| 13 |
+
device = torch.device(f'cuda:{device_id}')
|
| 14 |
+
infer_pipe = MegaTTS3DiTInfer(device=device)
|
| 15 |
+
|
| 16 |
+
while True:
|
| 17 |
+
task = input_queue.get()
|
| 18 |
+
inp_audio_path, inp_text, infer_timestep, p_w, t_w = task
|
| 19 |
+
try:
|
| 20 |
+
convert_to_wav(inp_audio_path)
|
| 21 |
+
wav_path = os.path.splitext(inp_audio_path)[0] + '.wav'
|
| 22 |
+
cut_wav(wav_path, max_len=28)
|
| 23 |
+
with open(wav_path, 'rb') as file:
|
| 24 |
+
file_content = file.read()
|
| 25 |
+
resource_context = infer_pipe.preprocess(file_content)
|
| 26 |
+
wav_bytes = infer_pipe.forward(resource_context, inp_text, time_step=infer_timestep, p_w=p_w, t_w=t_w)
|
| 27 |
+
output_queue.put(wav_bytes)
|
| 28 |
+
except Exception as e:
|
| 29 |
+
traceback.print_exc()
|
| 30 |
+
print(task, str(e))
|
| 31 |
+
output_queue.put(None)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w, processes, input_queue, output_queue):
|
| 35 |
+
if not inp_audio or not inp_text:
|
| 36 |
+
gr.Warning("Please provide both reference audio and text to generate.")
|
| 37 |
+
return None
|
| 38 |
+
|
| 39 |
+
print("Generating speech with:", inp_audio, inp_text, infer_timestep, p_w, t_w)
|
| 40 |
+
input_queue.put((inp_audio, inp_text, infer_timestep, p_w, t_w))
|
| 41 |
+
res = output_queue.get()
|
| 42 |
+
if res is not None:
|
| 43 |
+
return res
|
| 44 |
+
else:
|
| 45 |
+
gr.Warning("Speech generation failed. Please try again.")
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == '__main__':
|
| 50 |
+
mp.set_start_method('spawn', force=True)
|
| 51 |
+
mp_manager = mp.Manager()
|
| 52 |
+
|
| 53 |
+
devices = os.environ.get('CUDA_VISIBLE_DEVICES', '')
|
| 54 |
+
if devices != '':
|
| 55 |
+
devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",")
|
| 56 |
+
else:
|
| 57 |
+
devices = None
|
| 58 |
+
|
| 59 |
+
num_workers = 1
|
| 60 |
+
input_queue = mp_manager.Queue()
|
| 61 |
+
output_queue = mp_manager.Queue()
|
| 62 |
+
processes = []
|
| 63 |
+
|
| 64 |
+
print("Starting workers...")
|
| 65 |
+
for i in range(num_workers):
|
| 66 |
+
p = mp.Process(target=model_worker, args=(input_queue, output_queue, i % len(devices) if devices is not None else None))
|
| 67 |
+
p.start()
|
| 68 |
+
processes.append(p)
|
| 69 |
+
|
| 70 |
+
with gr.Blocks(title="MegaTTS3 Voice Cloning") as demo:
|
| 71 |
+
gr.Markdown("# MegaTTS3 Voice Cloning")
|
| 72 |
+
gr.Markdown("Upload a reference audio clip and enter text to generate speech with the cloned voice.")
|
| 73 |
+
|
| 74 |
+
with gr.Row():
|
| 75 |
+
with gr.Column():
|
| 76 |
+
reference_audio = gr.Audio(
|
| 77 |
+
label="Reference Audio",
|
| 78 |
+
type="filepath",
|
| 79 |
+
sources=["upload", "microphone"]
|
| 80 |
+
)
|
| 81 |
+
text_input = gr.Textbox(
|
| 82 |
+
label="Text to Generate",
|
| 83 |
+
placeholder="Enter the text you want to synthesize...",
|
| 84 |
+
lines=3
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 88 |
+
infer_timestep = gr.Number(
|
| 89 |
+
label="Inference Timesteps",
|
| 90 |
+
value=32,
|
| 91 |
+
minimum=1,
|
| 92 |
+
maximum=100,
|
| 93 |
+
step=1
|
| 94 |
+
)
|
| 95 |
+
p_w = gr.Number(
|
| 96 |
+
label="Intelligibility Weight",
|
| 97 |
+
value=1.4,
|
| 98 |
+
minimum=0.1,
|
| 99 |
+
maximum=5.0,
|
| 100 |
+
step=0.1
|
| 101 |
+
)
|
| 102 |
+
t_w = gr.Number(
|
| 103 |
+
label="Similarity Weight",
|
| 104 |
+
value=3.0,
|
| 105 |
+
minimum=0.1,
|
| 106 |
+
maximum=10.0,
|
| 107 |
+
step=0.1
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
generate_btn = gr.Button("Generate Speech", variant="primary")
|
| 111 |
+
|
| 112 |
+
with gr.Column():
|
| 113 |
+
output_audio = gr.Audio(label="Generated Audio")
|
| 114 |
+
|
| 115 |
+
generate_btn.click(
|
| 116 |
+
fn=partial(generate_speech, processes=processes, input_queue=input_queue, output_queue=output_queue),
|
| 117 |
+
inputs=[reference_audio, text_input, infer_timestep, p_w, t_w],
|
| 118 |
+
outputs=[output_audio]
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
demo.launch(server_name='0.0.0.0', server_port=7860, debug=True)
|
| 122 |
+
|
| 123 |
+
for p in processes:
|
| 124 |
+
p.join()
|