Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from langchain.embeddings import SentenceTransformerEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from transformers import pipeline | |
| import sentence_transformers | |
| print(sentence_transformers.__version__) | |
| from langchain.embeddings import SentenceTransformerEmbeddings | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
| import subprocess | |
| import sys | |
| # Install sentence-transformers if not installed | |
| try: | |
| import sentence_transformers | |
| except ImportError: | |
| subprocess.check_call([sys.executable, "-m", "pip", "install", "sentence-transformers"]) | |
| # Initialize embedding model | |
| embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
| qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") | |
| def chunk_text(text, chunk_size=500): | |
| words = text.split() | |
| chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] | |
| return chunks | |
| # Streamlit app | |
| st.title("Simple RAG Application") | |
| data = st.text_area("Paste your text here:") | |
| if data: | |
| text_chunks = chunk_text(data) | |
| vectorstore = FAISS.from_texts(text_chunks, embeddings) | |
| retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
| question = st.text_input("Ask a question:") | |
| if question: | |
| relevant_docs = retriever.get_relevant_documents(question) | |
| context = " ".join([doc.page_content for doc in relevant_docs]) | |
| answer = qa_pipeline(question=question, context=context) | |
| st.write("Answer:", answer["answer"]) | |