|
import gradio as gr |
|
from transformers import BlipProcessor, BlipForConditionalGeneration, RobertaTokenizer, RobertaForSequenceClassification |
|
|
|
|
|
caption_model_name = "Salesforce/blip-image-captioning-large" |
|
caption_processor = BlipProcessor.from_pretrained(caption_model_name) |
|
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name) |
|
|
|
|
|
emotion_model_name = "SamLowe/roberta-base-go_emotions" |
|
emotion_tokenizer = RobertaTokenizer.from_pretrained(emotion_model_name) |
|
emotion_model = RobertaForSequenceClassification.from_pretrained(emotion_model_name) |
|
|
|
def generate_caption_and_analyze_emotions(image): |
|
|
|
caption_inputs = caption_processor(images=image, return_tensors="pt") |
|
|
|
|
|
caption = caption_model.generate(**caption_inputs) |
|
|
|
|
|
decoded_caption = caption_processor.decode(caption[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
emotion_inputs = emotion_tokenizer(decoded_caption, return_tensors="pt") |
|
emotion_outputs = emotion_model(**emotion_inputs) |
|
|
|
|
|
emotion_label = emotion_tokenizer.decode(emotion_outputs.logits.argmax()) |
|
|
|
|
|
final_output = f"The sentiment in the provided image shows: {emotion_label}.\n\nGenerated Caption: {decoded_caption}" |
|
return final_output |
|
|
|
|
|
inputs = gr.inputs.Image(label="Upload an image") |
|
outputs = gr.outputs.Textbox(label="Generated Caption and Sentiment Analysis") |
|
|
|
|
|
gr.Interface(fn=generate_caption_and_analyze_emotions, inputs=inputs, outputs=outputs).launch() |
|
|