Commit
·
3a40934
1
Parent(s):
8f2f602
commit
Browse files
app.py
CHANGED
@@ -1,18 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
from transformers import
|
4 |
-
import torch
|
5 |
|
6 |
# Load the image captioning model and tokenizer
|
7 |
caption_model_name = "Salesforce/blip-image-captioning-large"
|
8 |
caption_processor = BlipProcessor.from_pretrained(caption_model_name)
|
9 |
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name)
|
10 |
|
11 |
-
# Load the emotion analysis model and tokenizer
|
12 |
-
emotion_model_name = "SamLowe/roberta-base-go_emotions"
|
13 |
-
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
14 |
-
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
15 |
-
|
16 |
def generate_caption_and_analyze_emotions(image):
|
17 |
# Preprocess the image for caption generation
|
18 |
caption_inputs = caption_processor(images=image, return_tensors="pt")
|
@@ -23,23 +17,16 @@ def generate_caption_and_analyze_emotions(image):
|
|
23 |
# Decode the output caption
|
24 |
decoded_caption = caption_processor.decode(caption[0], skip_special_tokens=True)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Get the predicted emotion label
|
38 |
-
emotion_label_id = emotion_outputs.logits.argmax().item()
|
39 |
-
emotion_label = emotion_tokenizer.decode(emotion_label_id)
|
40 |
-
|
41 |
-
# Prepare the final output with sentiment information
|
42 |
-
final_output = f"The sentiment in the provided image shows: {emotion_label}.\n\nGenerated Caption: {decoded_caption}"
|
43 |
return final_output
|
44 |
|
45 |
# Define the Gradio interface
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
from transformers import pipeline
|
|
|
4 |
|
5 |
# Load the image captioning model and tokenizer
|
6 |
caption_model_name = "Salesforce/blip-image-captioning-large"
|
7 |
caption_processor = BlipProcessor.from_pretrained(caption_model_name)
|
8 |
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
def generate_caption_and_analyze_emotions(image):
|
11 |
# Preprocess the image for caption generation
|
12 |
caption_inputs = caption_processor(images=image, return_tensors="pt")
|
|
|
17 |
# Decode the output caption
|
18 |
decoded_caption = caption_processor.decode(caption[0], skip_special_tokens=True)
|
19 |
|
20 |
+
# Load the emotion analysis model and tokenizer
|
21 |
+
emotion_model_name = "SamLowe/roberta-base-go_emotions"
|
22 |
+
emotion_classifier = pipeline(model=emotion_model_name)
|
23 |
+
|
24 |
+
results = emotion_classifier(decoded_caption)
|
25 |
+
if results[0]['label'] == 'neutral' or results[0]['score'] <= 0.40:
|
26 |
+
final_output = f"Sentiment of image is not clear, image shows {decoded_caption}."
|
27 |
+
else:
|
28 |
+
final_output = f"Sentiment of the image shows {results[0]['label']}."
|
29 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return final_output
|
31 |
|
32 |
# Define the Gradio interface
|