Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,293 +1,37 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import matplotlib.pyplot as plt
|
| 10 |
-
from huggingface_hub import hf_hub_download
|
| 11 |
-
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
|
| 12 |
-
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 13 |
-
from datasets import load_dataset
|
| 14 |
-
import soundfile as sf
|
| 15 |
-
|
| 16 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 17 |
-
print(f"Using device: {device}")
|
| 18 |
-
|
| 19 |
-
# Load speech-to-text model
|
| 20 |
-
try:
|
| 21 |
-
speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(device)
|
| 22 |
-
speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
| 23 |
-
print("Speech recognition model loaded successfully!")
|
| 24 |
-
except Exception as e:
|
| 25 |
-
print(f"Error loading speech recognition model: {e}")
|
| 26 |
-
speech_recognizer = None
|
| 27 |
-
speech_processor = None
|
| 28 |
-
|
| 29 |
-
# Load text-to-speech models
|
| 30 |
-
try:
|
| 31 |
-
# Load processor and model
|
| 32 |
-
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 33 |
-
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
| 34 |
-
tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 35 |
-
|
| 36 |
-
# Load speaker embeddings
|
| 37 |
-
speaker_embeddings = torch.load("./speaker_embedding.pt").to(device)
|
| 38 |
-
except Exception as e:
|
| 39 |
-
print(f"Error loading text-to-speech models: {e}")
|
| 40 |
-
tts_processor = None
|
| 41 |
-
tts_model = None
|
| 42 |
-
tts_vocoder = None
|
| 43 |
-
speaker_embeddings = None
|
| 44 |
-
|
| 45 |
-
# Modele CNN
|
| 46 |
-
class modele_CNN(nn.Module):
|
| 47 |
-
def __init__(self, num_classes=7, dropout=0.3):
|
| 48 |
-
super(modele_CNN, self).__init__()
|
| 49 |
-
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
|
| 50 |
-
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
| 51 |
-
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
|
| 52 |
-
self.pool = nn.MaxPool2d(2, 2)
|
| 53 |
-
self.fc1 = nn.Linear(64 * 1 * 62, 128)
|
| 54 |
-
self.fc2 = nn.Linear(128, num_classes)
|
| 55 |
-
self.dropout = nn.Dropout(dropout)
|
| 56 |
-
|
| 57 |
-
def forward(self, x):
|
| 58 |
-
x = self.pool(F.relu(self.conv1(x)))
|
| 59 |
-
x = self.pool(F.relu(self.conv2(x)))
|
| 60 |
-
x = self.pool(F.relu(self.conv3(x)))
|
| 61 |
-
x = x.view(x.size(0), -1)
|
| 62 |
-
x = self.dropout(F.relu(self.fc1(x)))
|
| 63 |
-
x = self.fc2(x)
|
| 64 |
-
return x
|
| 65 |
-
|
| 66 |
-
# Audio processor
|
| 67 |
-
class AudioProcessor:
|
| 68 |
-
def Mel2Hz(self, mel): return 700 * (np.power(10, mel/2595)-1)
|
| 69 |
-
def Hz2Mel(self, freq): return 2595 * np.log10(1+freq/700)
|
| 70 |
-
def Hz2Ind(self, freq, fs, Tfft): return (freq*Tfft/fs).astype(int)
|
| 71 |
-
|
| 72 |
-
def hamming(self, T):
|
| 73 |
-
if T <= 1:
|
| 74 |
-
return np.ones(T)
|
| 75 |
-
return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1))
|
| 76 |
-
|
| 77 |
-
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
|
| 78 |
-
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs, Tfft)
|
| 79 |
-
filtres = np.zeros((int(Tfft/2), nf))
|
| 80 |
-
for i in range(nf): filtres[Indices[i]:Indices[i+2], i] = self.hamming(Indices[i+2]-Indices[i])
|
| 81 |
-
return filtres
|
| 82 |
-
|
| 83 |
-
def spectrogram(self, x, T, p, Tfft):
|
| 84 |
-
S = []
|
| 85 |
-
for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T))
|
| 86 |
-
S = np.fft.fft(S, Tfft)
|
| 87 |
-
return np.abs(S), np.angle(S)
|
| 88 |
-
|
| 89 |
-
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
|
| 90 |
-
data = (data[1]-np.mean(data[1]))/np.std(data[1])
|
| 91 |
-
amp, ph = self.spectrogram(data, T, p, Tfft)
|
| 92 |
-
amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1)
|
| 93 |
-
return idct(amp_f, n=nc, norm='ortho')
|
| 94 |
-
|
| 95 |
-
def process_audio(self, audio_data, sr, audio_length=32000):
|
| 96 |
-
if sr != 16000:
|
| 97 |
-
audio_resampled = np.interp(
|
| 98 |
-
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
| 99 |
-
np.arange(len(audio_data)),
|
| 100 |
-
audio_data
|
| 101 |
)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
if speech_recognizer is None or speech_processor is None:
|
| 126 |
-
return "Speech recognition model not available"
|
| 127 |
-
|
| 128 |
-
try:
|
| 129 |
-
# Read audio file
|
| 130 |
-
audio_data, sr = sf.read(audio_path)
|
| 131 |
-
|
| 132 |
-
# Resample to 16kHz if needed
|
| 133 |
-
if sr != 16000:
|
| 134 |
-
audio_data = np.interp(
|
| 135 |
-
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
| 136 |
-
np.arange(len(audio_data)),
|
| 137 |
-
audio_data
|
| 138 |
-
)
|
| 139 |
-
sr = 16000
|
| 140 |
-
|
| 141 |
-
# Process audio
|
| 142 |
-
inputs = speech_processor(audio_data, sampling_rate=sr, return_tensors="pt")
|
| 143 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 144 |
-
|
| 145 |
-
# Generate transcription
|
| 146 |
-
generated_ids = speech_recognizer.generate(**inputs)
|
| 147 |
-
transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 148 |
-
|
| 149 |
-
return transcription
|
| 150 |
-
except Exception as e:
|
| 151 |
-
return f"Speech recognition error: {str(e)}"
|
| 152 |
-
|
| 153 |
-
# Speech synthesis function
|
| 154 |
-
def synthesize_speech(text):
|
| 155 |
-
if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None:
|
| 156 |
-
return None
|
| 157 |
-
|
| 158 |
-
try:
|
| 159 |
-
# Preprocess text
|
| 160 |
-
inputs = tts_processor(text=text, return_tensors="pt").to(device)
|
| 161 |
-
|
| 162 |
-
# Generate speech with speaker embeddings
|
| 163 |
-
spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
| 164 |
-
|
| 165 |
-
# Convert to waveform
|
| 166 |
-
with torch.no_grad():
|
| 167 |
-
speech = tts_vocoder(spectrogram)
|
| 168 |
-
|
| 169 |
-
# Convert to numpy array and normalize
|
| 170 |
-
speech = speech.cpu().numpy()
|
| 171 |
-
speech = speech / np.max(np.abs(speech))
|
| 172 |
-
|
| 173 |
-
return (16000, speech.squeeze())
|
| 174 |
-
except Exception as e:
|
| 175 |
-
print(f"Speech synthesis error: {str(e)}")
|
| 176 |
-
return None
|
| 177 |
-
|
| 178 |
-
# ... (keep all previous imports and class definitions)
|
| 179 |
-
|
| 180 |
-
# Updated predict_speaker function to return consistent values
|
| 181 |
-
def predict_speaker(audio, model, processor):
|
| 182 |
-
if audio is None:
|
| 183 |
-
return "Aucun audio détecté.", {}, "Aucun texte reconnu", "Inconnu" # Now returns 4 values
|
| 184 |
-
|
| 185 |
-
try:
|
| 186 |
-
audio_data, sr = sf.read(audio)
|
| 187 |
-
input_tensor = processor.process_audio(audio_data, sr)
|
| 188 |
-
|
| 189 |
-
device = next(model.parameters()).device
|
| 190 |
-
input_tensor = input_tensor.to(device)
|
| 191 |
-
|
| 192 |
-
with torch.no_grad():
|
| 193 |
-
output = model(input_tensor)
|
| 194 |
-
print(output) # Debug output
|
| 195 |
-
probabilities = F.softmax(output, dim=1)
|
| 196 |
-
confidence, predicted_class = torch.max(probabilities, 1)
|
| 197 |
-
|
| 198 |
-
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
|
| 199 |
-
predicted_speaker = speakers[predicted_class.item()]
|
| 200 |
-
|
| 201 |
-
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)"
|
| 202 |
-
|
| 203 |
-
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
|
| 204 |
-
|
| 205 |
-
# Recognize speech
|
| 206 |
-
recognized_text = recognize_speech(audio) if speech_recognizer else "Modèle de reconnaissance vocale non disponible"
|
| 207 |
-
|
| 208 |
-
return result, probs_dict, recognized_text, predicted_speaker # Now returns 4 values
|
| 209 |
-
|
| 210 |
-
except Exception as e:
|
| 211 |
-
return f"Erreur : {str(e)}", {}, "Erreur de reconnaissance", "Inconnu"
|
| 212 |
-
|
| 213 |
-
# Updated recognize function
|
| 214 |
-
def recognize(audio, selected_model):
|
| 215 |
-
model = load_model(model_filename=selected_model)
|
| 216 |
-
if model is None:
|
| 217 |
-
return "Erreur: Modèle non chargé", None, "Erreur", None
|
| 218 |
-
|
| 219 |
-
res, probs, text, speaker = predict_speaker(audio, model, processor) # Now expects 4 values
|
| 220 |
-
|
| 221 |
-
# Generate plot
|
| 222 |
-
fig = None
|
| 223 |
-
if probs:
|
| 224 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 225 |
-
ax.bar(probs.keys(), probs.values(), color='skyblue')
|
| 226 |
-
ax.set_ylim([0, 1])
|
| 227 |
-
ax.set_ylabel("Confiance")
|
| 228 |
-
ax.set_xlabel("Locuteurs")
|
| 229 |
-
ax.set_title("Probabilités de reconnaissance")
|
| 230 |
-
plt.xticks(rotation=45)
|
| 231 |
-
plt.tight_layout()
|
| 232 |
-
|
| 233 |
-
# Generate speech synthesis if text was recognized
|
| 234 |
-
synth_audio = None
|
| 235 |
-
if synthesizer is not None and text and "erreur" not in text.lower():
|
| 236 |
-
try:
|
| 237 |
-
synth_text = f"Le locuteur {speaker} a dit : {text}" if speaker else f"Le locuteur a dit : {text}"
|
| 238 |
-
synth_audio = synthesize_speech(synth_text)
|
| 239 |
-
except Exception as e:
|
| 240 |
-
print(f"Erreur de synthèse vocale: {e}")
|
| 241 |
-
|
| 242 |
-
return res, fig, text, synth_audio if synth_audio else None
|
| 243 |
-
|
| 244 |
-
# Updated interface creation
|
| 245 |
-
def create_interface():
|
| 246 |
-
processor = AudioProcessor()
|
| 247 |
-
|
| 248 |
-
with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
|
| 249 |
-
gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
|
| 250 |
-
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
|
| 251 |
-
|
| 252 |
-
with gr.Row():
|
| 253 |
-
with gr.Column():
|
| 254 |
-
# Dropdown pour sélectionner le modèle
|
| 255 |
-
model_selector = gr.Dropdown(
|
| 256 |
-
choices=["model_1.pth", "model_2.pth", "model_3.pth"],
|
| 257 |
-
value="model_3.pth",
|
| 258 |
-
label="Choisissez le modèle"
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# Créer des onglets pour Microphone et Upload Audio
|
| 262 |
-
with gr.Tab("Microphone"):
|
| 263 |
-
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Enregistrer depuis le microphone")
|
| 264 |
-
|
| 265 |
-
with gr.Tab("Upload Audio"):
|
| 266 |
-
file_input = gr.Audio(sources=["upload"], type="filepath", label="📁 Télécharger un fichier audio")
|
| 267 |
-
|
| 268 |
-
# Bouton pour démarrer la reconnaissance
|
| 269 |
-
record_btn = gr.Button("Reconnaître")
|
| 270 |
-
|
| 271 |
-
with gr.Column():
|
| 272 |
-
# Résultat, graphique et texte reconnu
|
| 273 |
-
result_text = gr.Textbox(label="Résultat")
|
| 274 |
-
plot_output = gr.Plot(label="Confiance par locuteur")
|
| 275 |
-
recognized_text = gr.Textbox(label="Texte reconnu")
|
| 276 |
-
audio_output = gr.Audio(label="Synthèse vocale", visible=False)
|
| 277 |
-
|
| 278 |
-
# Fonction de clique pour la reconnaissance
|
| 279 |
-
def recognize(audio, selected_model):
|
| 280 |
-
# Traitement audio et modèle à charger...
|
| 281 |
-
pass # Remplace ici avec ton code de traitement
|
| 282 |
-
|
| 283 |
# Lier le bouton "Reconnaître" à la fonction
|
| 284 |
record_btn.click(
|
| 285 |
fn=recognize,
|
| 286 |
inputs=[mic_input, file_input, model_selector], # Remplacer Union par les deux inputs distincts
|
| 287 |
outputs=[result_text, plot_output, recognized_text, audio_output]
|
| 288 |
-
)
|
| 289 |
-
return interface
|
| 290 |
-
|
| 291 |
-
if __name__ == "__main__":
|
| 292 |
-
app = create_interface()
|
| 293 |
-
app.launch(share=True)
|
|
|
|
| 1 |
+
with gr.Row():
|
| 2 |
+
with gr.Column():
|
| 3 |
+
# Dropdown pour sélectionner le modèle
|
| 4 |
+
model_selector = gr.Dropdown(
|
| 5 |
+
choices=["model_1.pth", "model_2.pth", "model_3.pth"],
|
| 6 |
+
value="model_3.pth",
|
| 7 |
+
label="Choisissez le modèle"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
+
|
| 10 |
+
# Créer des onglets pour Microphone et Upload Audio
|
| 11 |
+
with gr.Tab("Microphone"):
|
| 12 |
+
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Enregistrer depuis le microphone")
|
| 13 |
+
|
| 14 |
+
with gr.Tab("Upload Audio"):
|
| 15 |
+
file_input = gr.Audio(sources=["upload"], type="filepath", label="📁 Télécharger un fichier audio")
|
| 16 |
+
|
| 17 |
+
# Bouton pour démarrer la reconnaissance
|
| 18 |
+
record_btn = gr.Button("Reconnaître")
|
| 19 |
+
|
| 20 |
+
with gr.Column():
|
| 21 |
+
# Résultat, graphique et texte reconnu
|
| 22 |
+
result_text = gr.Textbox(label="Résultat")
|
| 23 |
+
plot_output = gr.Plot(label="Confiance par locuteur")
|
| 24 |
+
recognized_text = gr.Textbox(label="Texte reconnu")
|
| 25 |
+
audio_output = gr.Audio(label="Synthèse vocale", visible=False)
|
| 26 |
+
|
| 27 |
+
# Fonction de clique pour la reconnaissance
|
| 28 |
+
def recognize(audio, selected_model):
|
| 29 |
+
# Traitement audio et modèle à charger...
|
| 30 |
+
pass # Remplace ici avec ton code de traitement
|
| 31 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Lier le bouton "Reconnaître" à la fonction
|
| 33 |
record_btn.click(
|
| 34 |
fn=recognize,
|
| 35 |
inputs=[mic_input, file_input, model_selector], # Remplacer Union par les deux inputs distincts
|
| 36 |
outputs=[result_text, plot_output, recognized_text, audio_output]
|
| 37 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|