Spaces:
Sleeping
Sleeping
| // | |
| // llama_kv_cache_unified | |
| // | |
| uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) { | |
| // the FA kernels require padding to avoid extra runtime boundary checks | |
| return cparams.flash_attn ? 256u : 32u; | |
| } | |
| llama_kv_cache_unified::llama_kv_cache_unified( | |
| const llama_model & model, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| bool v_trans, | |
| bool offload, | |
| uint32_t kv_size, | |
| uint32_t padding) : model(model), hparams(model.hparams), v_trans(v_trans), padding(padding) { | |
| const int32_t n_layer = hparams.n_layer; | |
| has_shift = false; | |
| can_shift = true; | |
| LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d, padding = %d\n", | |
| __func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift, padding); | |
| GGML_ASSERT(kv_size % padding == 0 && "kv_size must be a multiple of padding"); | |
| head = 0; | |
| size = kv_size; | |
| used = 0; | |
| this->type_k = type_k; | |
| this->type_v = type_v; | |
| cells.clear(); | |
| cells.resize(kv_size); | |
| // create a context for each buffer type | |
| std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; | |
| auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { | |
| auto it = ctx_map.find(buft); | |
| if (it == ctx_map.end()) { | |
| ggml_init_params params = { | |
| /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), | |
| /*.mem_buffer =*/ NULL, | |
| /*.no_alloc =*/ true, | |
| }; | |
| ggml_context * ctx = ggml_init(params); | |
| if (!ctx) { | |
| return nullptr; | |
| } | |
| ctx_map[buft] = ctx; | |
| ctxs.emplace_back(ctx); | |
| return ctx; | |
| } | |
| return it->second; | |
| }; | |
| k_l.reserve(n_layer); | |
| v_l.reserve(n_layer); | |
| for (int i = 0; i < n_layer; i++) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); | |
| const char * dev_name = "CPU"; | |
| ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); | |
| if (offload) { | |
| auto * dev = model.dev_layer(i); | |
| buft = ggml_backend_dev_buffer_type(dev); | |
| dev_name = ggml_backend_dev_name(dev); | |
| } | |
| LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, i, dev_name); | |
| ggml_context * ctx = ctx_for_buft(buft); | |
| if (!ctx) { | |
| throw std::runtime_error("failed to create ggml context for kv cache"); | |
| } | |
| ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); | |
| ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); | |
| ggml_format_name(k, "cache_k_l%d", i); | |
| ggml_format_name(v, "cache_v_l%d", i); | |
| k_l.push_back(k); | |
| v_l.push_back(v); | |
| } | |
| // allocate tensors and initialize the buffers to avoid NaNs in the padding | |
| for (auto it : ctx_map) { | |
| auto * buft = it.first; | |
| auto * ctx = it.second; | |
| ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); | |
| if (!buf) { | |
| throw std::runtime_error("failed to allocate buffer for kv cache"); | |
| } | |
| ggml_backend_buffer_clear(buf, 0); | |
| LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); | |
| bufs.emplace_back(buf); | |
| } | |
| { | |
| const size_t memory_size_k = size_k_bytes(); | |
| const size_t memory_size_v = size_v_bytes(); | |
| LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, | |
| (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), | |
| ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), | |
| ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); | |
| } | |
| } | |
| void llama_kv_cache_unified::clear() { | |
| for (int32_t i = 0; i < (int32_t) size; ++i) { | |
| cells[i].pos = -1; | |
| cells[i].seq_id.clear(); | |
| } | |
| head = 0; | |
| used = 0; | |
| for (auto & buf : bufs) { | |
| ggml_backend_buffer_clear(buf.get(), 0); | |
| } | |
| } | |
| bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { | |
| uint32_t new_head = size; | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].pos >= p0 && cells[i].pos < p1) { | |
| if (seq_id < 0) { | |
| cells[i].seq_id.clear(); | |
| } else if (cells[i].has_seq_id(seq_id)) { | |
| cells[i].seq_id.erase(seq_id); | |
| } else { | |
| continue; | |
| } | |
| if (cells[i].is_empty()) { | |
| // keep count of the number of used cells | |
| if (cells[i].pos >= 0) { | |
| used--; | |
| } | |
| cells[i].pos = -1; | |
| if (new_head == size) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != size && new_head < head) { | |
| head = new_head; | |
| } | |
| return true; | |
| } | |
| void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { | |
| if (seq_id_src == seq_id_dst) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // otherwise, this is the KV of a Transformer-like model | |
| head = 0; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].has_seq_id(seq_id_src) && cells[i].pos >= p0 && cells[i].pos < p1) { | |
| cells[i].seq_id.insert(seq_id_dst); | |
| } | |
| } | |
| } | |
| void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) { | |
| uint32_t new_head = size; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (!cells[i].has_seq_id(seq_id)) { | |
| if (cells[i].pos >= 0) { | |
| used--; | |
| } | |
| cells[i].pos = -1; | |
| cells[i].seq_id.clear(); | |
| if (new_head == size){ | |
| new_head = i; | |
| } | |
| } else { | |
| cells[i].seq_id.clear(); | |
| cells[i].seq_id.insert(seq_id); | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != size && new_head < head) { | |
| head = new_head; | |
| } | |
| } | |
| void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { | |
| if (delta == 0) { | |
| return; | |
| } | |
| uint32_t new_head = size; | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // If there is no range then return early to avoid looping over the | |
| if (p0 == p1) { | |
| return; | |
| } | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) { | |
| has_shift = true; | |
| cells[i].pos += delta; | |
| cells[i].delta += delta; | |
| if (cells[i].pos < 0) { | |
| if (!cells[i].is_empty()) { | |
| used--; | |
| } | |
| cells[i].pos = -1; | |
| cells[i].seq_id.clear(); | |
| if (new_head == size) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| // Otherwise we just start the next search from the beginning. | |
| head = new_head != size ? new_head : 0; | |
| } | |
| void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { | |
| if (d == 1) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // If there is no range then return early to avoid looping over the cache. | |
| if (p0 == p1) { | |
| return; | |
| } | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) { | |
| has_shift = true; | |
| { | |
| llama_pos p_old = cells[i].pos; | |
| cells[i].pos /= d; | |
| cells[i].delta += cells[i].pos - p_old; | |
| } | |
| } | |
| } | |
| } | |
| llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const { | |
| llama_pos result = 0; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].has_seq_id(seq_id)) { | |
| result = std::max(result, cells[i].pos); | |
| } | |
| } | |
| return result; | |
| } | |
| void llama_kv_cache_unified::restore() { | |
| if (pending.ranges.empty()) { | |
| return; | |
| } | |
| uint32_t new_head = size; | |
| for (auto & range : pending.ranges) { | |
| for (uint32_t i = range.c0; i < range.c1; ++i) { | |
| cells[i].seq_id.clear(); | |
| // keep count of the number of used cells | |
| if (cells[i].pos >= 0) { | |
| used--; | |
| } | |
| cells[i].pos = -1; | |
| } | |
| new_head = std::min(new_head, range.c0); | |
| } | |
| if (new_head != size && new_head < head) { | |
| head = new_head; | |
| } | |
| } | |
| void llama_kv_cache_unified::commit() { | |
| if (pending.ranges.empty()) { | |
| LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n", | |
| __func__, "https://github.com/ggml-org/llama.cpp/pull/12695"); | |
| return; | |
| } | |
| pending.ranges.clear(); | |
| } | |
| bool llama_kv_cache_unified::update(llama_context & lctx) { | |
| bool need_reserve = false; | |
| auto * sched = lctx.get_sched(); | |
| if (has_shift) { | |
| if (!get_can_shift()) { | |
| GGML_ABORT("The current KV cache / model configuration does not support K-shift"); | |
| } | |
| LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); | |
| // apply K-shift if needed | |
| if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { | |
| ggml_backend_sched_reset(sched); | |
| auto * gf = lctx.graph_init(); | |
| auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf); | |
| ggml_backend_sched_alloc_graph(sched, gf); | |
| res->set_inputs(nullptr); | |
| lctx.graph_compute(gf, false); | |
| need_reserve = true; | |
| } | |
| { | |
| has_shift = false; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| cells[i].delta = 0; | |
| } | |
| } | |
| } | |
| if (do_defrag) { | |
| LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); | |
| if (defrag_prepare(lctx.graph_max_nodes())) { | |
| ggml_backend_sched_reset(sched); | |
| auto * gf = lctx.graph_init(); | |
| auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf); | |
| ggml_backend_sched_alloc_graph(sched, gf); | |
| res->set_inputs(nullptr); | |
| lctx.graph_compute(gf, false); | |
| need_reserve = true; | |
| } | |
| do_defrag = false; | |
| } | |
| return need_reserve; | |
| } | |
| void llama_kv_cache_unified::defrag_sched(float thold) { | |
| // - do not defrag small contexts (i.e. < 2048 tokens) | |
| // - count the padding towards the number of used tokens | |
| const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(used + padding)/n)) : 0.0f; | |
| // queue defragmentation for next llama_kv_cache_update | |
| if (fragmentation > thold) { | |
| LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); | |
| do_defrag = true; | |
| } | |
| } | |
| void llama_kv_cache_unified::set_full() { | |
| n = size; | |
| } | |
| llama_sbatch llama_kv_cache_unified::sbatch_init( | |
| const llama_batch & batch, | |
| bool logits_all) { | |
| return llama_sbatch(batch, hparams.n_embd, true, logits_all); | |
| } | |
| llama_ubatch llama_kv_cache_unified::ubatch_next( | |
| llama_sbatch & sbatch, | |
| uint32_t n_ubatch, | |
| bool embd_pooled) const { | |
| GGML_UNUSED(embd_pooled); | |
| return sbatch.split_simple(n_ubatch); | |
| } | |
| bool llama_kv_cache_unified::find_slot( | |
| const llama_ubatch & ubatch) { | |
| const uint32_t n_tokens = ubatch.n_tokens; | |
| const uint32_t n_seqs = ubatch.n_seqs; | |
| const uint32_t n_seq_tokens = ubatch.n_seq_tokens; | |
| // if we have enough unused cells before the current head -> | |
| // better to start searching from the beginning of the cache, hoping to fill it | |
| if (head > used + 2*ubatch.n_tokens) { | |
| head = 0; | |
| } | |
| // otherwise, one cell per token. | |
| if (n_tokens > size) { | |
| LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %d\n", __func__, n_tokens, size); | |
| return false; | |
| } | |
| uint32_t n_tested = 0; | |
| while (true) { | |
| if (head + n_tokens > size) { | |
| n_tested += size - head; | |
| head = 0; | |
| continue; | |
| } | |
| bool found = true; | |
| for (uint32_t i = 0; i < n_tokens; i++) { | |
| if (cells[head + i].pos >= 0) { | |
| found = false; | |
| head += i + 1; | |
| n_tested += i + 1; | |
| break; | |
| } | |
| } | |
| if (found) { | |
| break; | |
| } | |
| if (n_tested >= size) { | |
| //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); | |
| return false; | |
| } | |
| } | |
| for (uint32_t s = 0; s < n_seqs; s++) { | |
| for (uint32_t i = 0; i < n_seq_tokens; ++i) { | |
| uint32_t k = s*n_seq_tokens + i; | |
| cells[head + k].pos = ubatch.pos[k]; | |
| for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) { | |
| cells[head + k].seq_id.insert(ubatch.seq_id[s][j]); | |
| } | |
| } | |
| } | |
| used += n_tokens; | |
| pending.ranges.push_back({head, head + n_tokens}); | |
| // a heuristic, to avoid attending the full cache if it is not yet utilized | |
| // after enough generations, the benefit from this heuristic disappears | |
| // if we start defragmenting the cache, the benefit from this will be more important | |
| n = std::min(size, std::max(padding, GGML_PAD(cell_max(), padding))); | |
| //printf("n = %5d, used = %5d, head = %5d\n", n, used, head); | |
| return true; | |
| } | |
| int32_t llama_kv_cache_unified::get_n_tokens() const { | |
| int32_t result = 0; | |
| for (uint32_t i = 0; i < size; i++) { | |
| result += cells[i].seq_id.size(); | |
| } | |
| return result; | |
| } | |
| int32_t llama_kv_cache_unified::get_used_cells() const { | |
| return used; | |
| } | |
| bool llama_kv_cache_unified::get_can_shift() const { | |
| return can_shift; | |
| } | |
| llama_pos llama_kv_cache_unified::get_pos_max() const { | |
| llama_pos pos_max = -1; | |
| for (const auto & cell : cells) { | |
| pos_max = std::max(pos_max, cell.pos); | |
| } | |
| return pos_max; | |
| } | |
| size_t llama_kv_cache_unified::total_size() const { | |
| size_t size = 0; | |
| for (const auto & buf : bufs) { | |
| size += ggml_backend_buffer_get_size(buf.get()); | |
| } | |
| return size; | |
| } | |
| size_t llama_kv_cache_unified::size_k_bytes() const { | |
| size_t size_k_bytes = 0; | |
| for (const auto & k : k_l) { | |
| size_k_bytes += ggml_nbytes(k); | |
| } | |
| return size_k_bytes; | |
| } | |
| size_t llama_kv_cache_unified::size_v_bytes() const { | |
| size_t size_v_bytes = 0; | |
| for (const auto & v : v_l) { | |
| size_v_bytes += ggml_nbytes(v); | |
| } | |
| return size_v_bytes; | |
| } | |
| ggml_tensor * llama_kv_cache_unified::build_rope_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_tensor * cur, | |
| ggml_tensor * shift, | |
| ggml_tensor * factors, | |
| float freq_base, | |
| float freq_scale) const { | |
| const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; | |
| const auto & yarn_ext_factor = cparams.yarn_ext_factor; | |
| const auto & yarn_beta_fast = cparams.yarn_beta_fast; | |
| const auto & yarn_beta_slow = cparams.yarn_beta_slow; | |
| const auto & n_rot = hparams.n_rot; | |
| const auto & rope_type = hparams.rope_type; | |
| // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. | |
| // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. | |
| const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor; | |
| ggml_tensor * tmp; | |
| if (ggml_is_quantized(cur->type)) { | |
| // dequantize to f32 -> RoPE -> quantize back | |
| tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); | |
| tmp = ggml_rope_ext(ctx, tmp, | |
| shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, | |
| yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); | |
| tmp = ggml_cpy(ctx, tmp, cur); | |
| } else { | |
| // we rotate only the first n_rot dimensions | |
| tmp = ggml_rope_ext_inplace(ctx, cur, | |
| shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, | |
| yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); | |
| } | |
| return tmp; | |
| } | |
| class llm_graph_input_k_shift : public llm_graph_input_i { | |
| public: | |
| llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} | |
| virtual ~llm_graph_input_k_shift() = default; | |
| void set_input(const llama_ubatch * ubatch) override; | |
| ggml_tensor * k_shift; // I32 [kv_size] | |
| const llama_kv_cache_unified * kv_self; | |
| }; | |
| void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { | |
| GGML_UNUSED(ubatch); | |
| if (k_shift) { | |
| assert(ggml_backend_buffer_is_host(k_shift->buffer)); | |
| int32_t * data = (int32_t *) k_shift->data; | |
| for (uint32_t i = 0; i < kv_self->size; ++i) { | |
| data[i] = kv_self->cells[i].delta; | |
| } | |
| } | |
| } | |
| llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_cgraph * gf) const { | |
| auto res = std::make_unique<llm_graph_result>(); | |
| const auto & n_layer = hparams.n_layer; | |
| const auto & n_embd_head_k = hparams.n_embd_head_k; | |
| //const auto & n_embd_head_v = hparams.n_embd_head_v; | |
| const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; | |
| //GGML_ASSERT(kv_self->size == n_ctx); | |
| auto inp = std::make_unique<llm_graph_input_k_shift>(this); | |
| inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx); | |
| ggml_set_input(inp->k_shift); | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const int64_t n_head_kv = hparams.n_head_kv(il); | |
| const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| const bool is_swa = hparams.is_swa(il); | |
| // note: the swa rope params could become part of the cparams in the future | |
| // if we decide to make them configurable, like the non-sliding ones | |
| const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base; | |
| const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale; | |
| ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il); | |
| ggml_tensor * k = | |
| ggml_view_3d(ctx, k_l[il], | |
| n_embd_head_k, n_head_kv, size, | |
| ggml_row_size(k_l[il]->type, n_embd_head_k), | |
| ggml_row_size(k_l[il]->type, n_embd_k_gqa), | |
| 0); | |
| ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); | |
| ggml_build_forward_expand(gf, cur); | |
| } | |
| res->add_input(std::move(inp)); | |
| return res; | |
| } | |
| llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_cgraph * gf) const { | |
| auto res = std::make_unique<llm_graph_result>(); | |
| const auto & ids = defrag_info.ids; | |
| // CPU defrag | |
| // | |
| // TODO: optimizations are possible: | |
| // - multiple threads | |
| // - avoid copying to the host memory when already there | |
| // | |
| // likely not worth the effort, as we have ggml_graph based defrag | |
| // | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); | |
| const uint32_t kv_size = size; | |
| std::vector<uint8_t> buf_k; | |
| std::vector<uint8_t> buf_v; | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); | |
| const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); | |
| const size_t v_size_el = ggml_type_size(v_l[il]->type); | |
| const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); | |
| buf_k.resize(k_size); | |
| buf_v.resize(v_size); | |
| ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); | |
| ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); | |
| // batch move [i, i+nm) to [id, id+nm) | |
| // note: cells can move only to a lower index | |
| for (uint32_t i = 0; i < n_kv; ++i) { | |
| const uint32_t id = ids[i]; | |
| if (i == id || id == n_kv) { | |
| continue; | |
| } | |
| uint32_t nm = 1; | |
| while (i + nm < n_kv && ids[i + nm] == id + nm) { | |
| nm++; | |
| } | |
| // move keys | |
| { | |
| const int64_t os = i*k_size_row; | |
| const int64_t od = id*k_size_row; | |
| memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); | |
| } | |
| // move values (note: they are transposed) | |
| { | |
| const int64_t os = i; | |
| const int64_t od = id; | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); | |
| } | |
| } | |
| i += nm - 1; | |
| } | |
| ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); | |
| ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); | |
| } | |
| for (uint32_t i = 0; i < ids.size(); ++i) { | |
| const uint32_t id = ids[i]; | |
| if (i == id || id == ids.size()) { | |
| continue; | |
| } | |
| uint32_t nm = 1; | |
| while (i + nm < ids.size() && ids[i + nm] == id + nm) { | |
| nm++; | |
| } | |
| for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT | |
| const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| ggml_tensor * view_k_src = ggml_view_2d(ctx, k_l[il], | |
| n_embd_k_gqa, nm, | |
| ggml_row_size(k_l[il]->type, n_embd_k_gqa), | |
| ggml_row_size(k_l[il]->type, n_embd_k_gqa*i)); | |
| ggml_tensor * view_k_dst = ggml_view_2d(ctx, k_l[il], | |
| n_embd_k_gqa, nm, | |
| ggml_row_size(k_l[il]->type, n_embd_k_gqa), | |
| ggml_row_size(k_l[il]->type, n_embd_k_gqa*id)); | |
| ggml_tensor * view_v_src; | |
| ggml_tensor * view_v_dst; | |
| if (cparams.flash_attn) { | |
| // NOTE: the V cache is not transposed when using flash attention | |
| view_v_src = ggml_view_2d(ctx, v_l[il], | |
| n_embd_v_gqa, nm, | |
| ggml_row_size(v_l[il]->type, n_embd_v_gqa), | |
| ggml_row_size(v_l[il]->type, n_embd_v_gqa*i)); | |
| view_v_dst = ggml_view_2d(ctx, v_l[il], | |
| n_embd_v_gqa, nm, | |
| ggml_row_size(v_l[il]->type, n_embd_v_gqa), | |
| ggml_row_size(v_l[il]->type, n_embd_v_gqa*id)); | |
| } else { | |
| view_v_src = ggml_view_2d(ctx, v_l[il], | |
| nm, n_embd_v_gqa, | |
| ggml_row_size(v_l[il]->type, size), | |
| ggml_row_size(v_l[il]->type, i)); | |
| view_v_dst = ggml_view_2d(ctx, v_l[il], | |
| nm, n_embd_v_gqa, | |
| ggml_row_size(v_l[il]->type, size), | |
| ggml_row_size(v_l[il]->type, id)); | |
| } | |
| ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst)); | |
| ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst)); | |
| } | |
| i += nm - 1; | |
| } | |
| //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); | |
| return res; | |
| } | |
| bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) { | |
| const uint32_t n_layer = hparams.n_layer; | |
| const uint32_t n_kv = cell_max(); | |
| const uint32_t n_used = used; | |
| assert(n_used <= n_kv); | |
| //const int64_t t_start = ggml_time_us(); | |
| // number of cells moved | |
| uint32_t n_moves = 0; | |
| // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag) | |
| // - source view, destination view, copy operation | |
| // - x2 for keys and values | |
| //const uint32_t max_moves = max_nodes()/(6*n_layer); | |
| // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 | |
| const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer); | |
| // determine which KV cells to move where | |
| // | |
| // cell i moves to ids[i] | |
| // | |
| // if ids[i] == i || ids[i] == n_kv, then cell i is not moved | |
| // | |
| auto & ids = defrag_info.ids; | |
| ids.clear(); | |
| ids.resize(n_kv, n_kv); | |
| for (uint32_t i0 = 0; i0 < n_used; ++i0) { | |
| const auto & cell0 = cells[i0]; | |
| if (!cell0.is_empty()) { | |
| ids[i0] = i0; | |
| continue; | |
| } | |
| // found a hole - fill it with data from the end of the cache | |
| uint32_t nh = 1; | |
| // determine the size of the hole | |
| while (i0 + nh < n_used && cells[i0 + nh].is_empty()) { | |
| nh++; | |
| } | |
| uint32_t nf = 0; | |
| uint32_t is = n_kv - 1; | |
| // starting from the end, find nh non-empty cells | |
| for (; is > i0; --is) { | |
| const auto & cell1 = cells[is]; | |
| if (cell1.is_empty() || ids[is] != n_kv) { | |
| continue; | |
| } | |
| // non-empty cell which is not yet moved | |
| nf++; | |
| if (nf == nh) { | |
| break; | |
| } | |
| } | |
| // this can only happen if `n_used` is not accurate, which would be a bug | |
| GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); | |
| nf = 0; | |
| uint32_t i1 = is; | |
| // are we moving a continuous block of memory? | |
| bool cont = false; | |
| // should we stop searching for the next move? | |
| bool stop = false; | |
| // go back and move the nf cells to the hole | |
| for (; i1 < n_kv; ++i1) { | |
| auto & cell1 = cells[i1]; | |
| if (cell1.is_empty() || ids[i1] != n_kv) { | |
| if (n_moves == max_moves) { | |
| stop = true; | |
| break; | |
| } | |
| cont = false; | |
| continue; | |
| } | |
| // this cell goes to (i0 + nf) | |
| ids[i1] = i0 + nf; | |
| // move the cell meta data | |
| cells[i0 + nf] = cell1; | |
| // clear the old cell and move the head there | |
| cell1 = kv_cell(); | |
| head = n_used; | |
| if (!cont) { | |
| n_moves++; | |
| cont = true; | |
| } | |
| nf++; | |
| if (nf == nh) { | |
| break; | |
| } | |
| } | |
| if (stop || n_moves == max_moves) { | |
| break; | |
| } | |
| //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); | |
| i0 += nh - 1; | |
| } | |
| if (n_moves == 0) { | |
| return false; | |
| } | |
| LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves); | |
| LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer); | |
| return true; | |
| } | |
| uint32_t llama_kv_cache_unified::cell_max() const { | |
| for (uint32_t i = size; i > 0; --i) { | |
| const kv_cell & cell = cells[i - 1]; | |
| if (cell.pos >= 0 && !cell.is_empty()) { | |
| return i; | |
| } | |
| } | |
| return 0; | |
| } | |
| void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { | |
| std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive | |
| uint32_t cell_count = 0; | |
| // Count the number of cells with the specified seq_id | |
| // Find all the ranges of cells with this seq id (or all, when -1) | |
| uint32_t cell_range_begin = size; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| const auto & cell = cells[i]; | |
| if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { | |
| ++cell_count; | |
| if (cell_range_begin == size) { | |
| cell_range_begin = i; | |
| } | |
| } else { | |
| if (cell_range_begin != size) { | |
| cell_ranges.emplace_back(cell_range_begin, i); | |
| cell_range_begin = size; | |
| } | |
| } | |
| } | |
| if (cell_range_begin != size) { | |
| cell_ranges.emplace_back(cell_range_begin, size); | |
| } | |
| // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count | |
| uint32_t cell_count_check = 0; | |
| for (const auto & range : cell_ranges) { | |
| cell_count_check += range.second - range.first; | |
| } | |
| GGML_ASSERT(cell_count == cell_count_check); | |
| io.write(&cell_count, sizeof(cell_count)); | |
| state_write_meta(io, cell_ranges, seq_id); | |
| state_write_data(io, cell_ranges); | |
| } | |
| void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) { | |
| uint32_t cell_count; | |
| io.read_to(&cell_count, sizeof(cell_count)); | |
| bool res = true; | |
| res = res && state_read_meta(io, cell_count, seq_id); | |
| res = res && state_read_data(io, cell_count); | |
| if (!res) { | |
| if (seq_id == -1) { | |
| clear(); | |
| } else { | |
| seq_rm(seq_id, -1, -1); | |
| } | |
| throw std::runtime_error("failed to restore kv cache"); | |
| } | |
| } | |
| void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const { | |
| for (const auto & range : cell_ranges) { | |
| for (uint32_t i = range.first; i < range.second; ++i) { | |
| const auto & cell = cells[i]; | |
| const llama_pos pos = cell.pos; | |
| const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; | |
| io.write(&pos, sizeof(pos)); | |
| io.write(&n_seq_id, sizeof(n_seq_id)); | |
| if (n_seq_id) { | |
| for (auto seq_id : cell.seq_id) { | |
| io.write(&seq_id, sizeof(seq_id)); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const { | |
| const uint32_t v_trans = this->v_trans ? 1 : 0; | |
| const uint32_t n_layer = hparams.n_layer; | |
| io.write(&v_trans, sizeof(v_trans)); | |
| io.write(&n_layer, sizeof(n_layer)); | |
| std::vector<uint8_t> tmp_buf; | |
| // Iterate and write all the keys first, each row is a cell | |
| // Get whole range at a time | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); | |
| // Write key type | |
| const int32_t k_type_i = (int32_t)k_l[il]->type; | |
| io.write(&k_type_i, sizeof(k_type_i)); | |
| // Write row size of key | |
| const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); | |
| io.write(&k_size_row, sizeof(k_size_row)); | |
| // Read each range of cells of k_size length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t buf_size = range_size * k_size_row; | |
| io.write_tensor(k_l[il], range.first * k_size_row, buf_size); | |
| } | |
| } | |
| if (!v_trans) { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Write value type | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| io.write(&v_type_i, sizeof(v_type_i)); | |
| // Write row size of value | |
| const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); | |
| io.write(&v_size_row, sizeof(v_size_row)); | |
| // Read each range of cells of v_size length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t buf_size = range_size * v_size_row; | |
| io.write_tensor(v_l[il], range.first * v_size_row, buf_size); | |
| } | |
| } | |
| } else { | |
| // When v is transposed, we also need the element size and get the element ranges from each row | |
| const uint32_t kv_size = size; | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Write value type | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| io.write(&v_type_i, sizeof(v_type_i)); | |
| // Write element size | |
| const uint32_t v_size_el = ggml_type_size(v_l[il]->type); | |
| io.write(&v_size_el, sizeof(v_size_el)); | |
| // Write GQA embedding size | |
| io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); | |
| // For each row, we get the element values of each cell | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| // Read each range of cells of v_size_el length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t src_offset = (range.first + j * kv_size) * v_size_el; | |
| const size_t buf_size = range_size * v_size_el; | |
| io.write_tensor(v_l[il], src_offset, buf_size); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { | |
| if (dest_seq_id != -1) { | |
| // single sequence | |
| seq_rm(dest_seq_id, -1, -1); | |
| llama_sbatch sbatch; | |
| llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); | |
| batch.n_tokens = cell_count; | |
| batch.n_seq_tokens = cell_count; | |
| batch.n_seqs = 1; | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| llama_pos pos; | |
| uint32_t n_seq_id; | |
| io.read_to(&pos, sizeof(pos)); | |
| io.read_to(&n_seq_id, sizeof(n_seq_id)); | |
| if (n_seq_id != 0) { | |
| LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); | |
| return false; | |
| } | |
| batch.pos[i] = pos; | |
| } | |
| batch.n_seq_id[0] = 1; | |
| batch.seq_id[0] = &dest_seq_id; | |
| if (!find_slot(batch)) { | |
| LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); | |
| return false; | |
| } | |
| commit(); | |
| // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) | |
| // Assume that this is one contiguous block of cells | |
| GGML_ASSERT(head + cell_count <= size); | |
| GGML_ASSERT(cells[head].pos == batch.pos[0]); | |
| GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]); | |
| GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); | |
| GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); | |
| } else { | |
| // whole KV cache restore | |
| if (cell_count > size) { | |
| LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); | |
| return false; | |
| } | |
| clear(); | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| kv_cell & cell = cells[i]; | |
| llama_pos pos; | |
| uint32_t n_seq_id; | |
| io.read_to(&pos, sizeof(pos)); | |
| io.read_to(&n_seq_id, sizeof(n_seq_id)); | |
| cell.pos = pos; | |
| for (uint32_t j = 0; j < n_seq_id; ++j) { | |
| llama_seq_id seq_id; | |
| io.read_to(&seq_id, sizeof(seq_id)); | |
| // TODO: llama_kv_cache_unified should have a notion of max sequences | |
| //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { | |
| if (seq_id < 0) { | |
| //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); | |
| LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id); | |
| return false; | |
| } | |
| cell.seq_id.insert(seq_id); | |
| } | |
| } | |
| head = 0; | |
| used = cell_count; | |
| } | |
| return true; | |
| } | |
| bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) { | |
| uint32_t v_trans; | |
| uint32_t n_layer; | |
| io.read_to(&v_trans, sizeof(v_trans)); | |
| io.read_to(&n_layer, sizeof(n_layer)); | |
| if (n_layer != hparams.n_layer) { | |
| LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); | |
| return false; | |
| } | |
| if (cell_count > size) { | |
| LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); | |
| return false; | |
| } | |
| if (this->v_trans != (bool) v_trans) { | |
| LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); | |
| return false; | |
| } | |
| // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); | |
| // Read type of key | |
| int32_t k_type_i_ref; | |
| io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); | |
| const int32_t k_type_i = (int32_t) k_l[il]->type; | |
| if (k_type_i != k_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); | |
| return false; | |
| } | |
| // Read row size of key | |
| uint64_t k_size_row_ref; | |
| io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); | |
| const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); | |
| if (k_size_row != k_size_row_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // Read and set the keys for the whole cell range | |
| ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); | |
| } | |
| } | |
| if (!this->v_trans) { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Read type of value | |
| int32_t v_type_i_ref; | |
| io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| if (v_type_i != v_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
| return false; | |
| } | |
| // Read row size of value | |
| uint64_t v_size_row_ref; | |
| io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); | |
| const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); | |
| if (v_size_row != v_size_row_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // Read and set the values for the whole cell range | |
| ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); | |
| } | |
| } | |
| } else { | |
| // For each layer, read the values for each cell (transposed) | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Read type of value | |
| int32_t v_type_i_ref; | |
| io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| if (v_type_i != v_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
| return false; | |
| } | |
| // Read element size of value | |
| uint32_t v_size_el_ref; | |
| io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); | |
| const size_t v_size_el = ggml_type_size(v_l[il]->type); | |
| if (v_size_el != v_size_el_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); | |
| return false; | |
| } | |
| // Read GQA embedding size | |
| uint32_t n_embd_v_gqa_ref; | |
| io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); | |
| if (n_embd_v_gqa != n_embd_v_gqa_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // For each row in the transposed matrix, read the values for the whole cell range | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| const size_t dst_offset = (head + j * size) * v_size_el; | |
| ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); | |
| } | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| // | |
| // llama_kv_cache_recurrent | |
| // | |
| llama_kv_cache_recurrent::llama_kv_cache_recurrent( | |
| const llama_model & model, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| bool offload, | |
| uint32_t kv_size) : hparams(model.hparams) { | |
| const int32_t n_layer = hparams.n_layer; | |
| LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d\n", | |
| __func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer); | |
| head = 0; | |
| size = kv_size; | |
| used = 0; | |
| this->type_k = type_k; | |
| this->type_v = type_v; | |
| cells.clear(); | |
| cells.resize(kv_size); | |
| // create a context for each buffer type | |
| std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; | |
| auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { | |
| auto it = ctx_map.find(buft); | |
| if (it == ctx_map.end()) { | |
| ggml_init_params params = { | |
| /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), | |
| /*.mem_buffer =*/ NULL, | |
| /*.no_alloc =*/ true, | |
| }; | |
| ggml_context * ctx = ggml_init(params); | |
| if (!ctx) { | |
| return nullptr; | |
| } | |
| ctx_map[buft] = ctx; | |
| ctxs.emplace_back(ctx); | |
| return ctx; | |
| } | |
| return it->second; | |
| }; | |
| k_l.reserve(n_layer); | |
| v_l.reserve(n_layer); | |
| for (int i = 0; i < n_layer; i++) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); | |
| const char * dev_name = "CPU"; | |
| ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); | |
| if (offload) { | |
| auto * dev = model.dev_layer(i); | |
| buft = ggml_backend_dev_buffer_type(dev); | |
| dev_name = ggml_backend_dev_name(dev); | |
| } | |
| LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name); | |
| ggml_context * ctx = ctx_for_buft(buft); | |
| if (!ctx) { | |
| throw std::runtime_error("failed to create ggml context for kv cache"); | |
| } | |
| ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); | |
| ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); | |
| ggml_format_name(k, "cache_k_l%d", i); | |
| ggml_format_name(v, "cache_v_l%d", i); | |
| k_l.push_back(k); | |
| v_l.push_back(v); | |
| } | |
| // allocate tensors and initialize the buffers to avoid NaNs in the padding | |
| for (auto it : ctx_map) { | |
| auto * buft = it.first; | |
| auto * ctx = it.second; | |
| ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); | |
| if (!buf) { | |
| throw std::runtime_error("failed to allocate buffer for kv cache"); | |
| } | |
| ggml_backend_buffer_clear(buf, 0); | |
| LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); | |
| bufs.emplace_back(buf); | |
| } | |
| { | |
| const size_t memory_size_k = size_k_bytes(); | |
| const size_t memory_size_v = size_v_bytes(); | |
| LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, | |
| (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), | |
| ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), | |
| ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); | |
| } | |
| } | |
| void llama_kv_cache_recurrent::clear() { | |
| for (int32_t i = 0; i < (int32_t) size; ++i) { | |
| cells[i].pos = -1; | |
| cells[i].seq_id.clear(); | |
| cells[i].src = -1; | |
| cells[i].tail = -1; | |
| } | |
| head = 0; | |
| used = 0; | |
| for (auto & buf : bufs) { | |
| ggml_backend_buffer_clear(buf.get(), 0); | |
| } | |
| } | |
| bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { | |
| uint32_t new_head = size; | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // models like Mamba or RWKV can't have a state partially erased | |
| if (seq_id >= (int64_t) size) { | |
| // could be fatal | |
| return false; | |
| } | |
| if (0 <= seq_id) { | |
| int32_t & tail_id = cells[seq_id].tail; | |
| if (tail_id >= 0) { | |
| const kv_cell & cell = cells[tail_id]; | |
| // partial intersection is invalid | |
| if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { | |
| return false; | |
| } | |
| // invalidate tails which will be cleared | |
| if (p0 <= cell.pos && cell.pos < p1) { | |
| tail_id = -1; | |
| } | |
| } | |
| } else { | |
| // seq_id is negative, then the range should include everything or nothing | |
| if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) { | |
| return false; | |
| } | |
| } | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].pos >= p0 && cells[i].pos < p1) { | |
| if (seq_id < 0) { | |
| cells[i].seq_id.clear(); | |
| } else if (cells[i].has_seq_id(seq_id)) { | |
| cells[i].seq_id.erase(seq_id); | |
| } else { | |
| continue; | |
| } | |
| if (cells[i].is_empty()) { | |
| // keep count of the number of used cells | |
| if (cells[i].pos >= 0) { | |
| used--; | |
| } | |
| cells[i].pos = -1; | |
| cells[i].src = -1; | |
| if (new_head == size) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != size && new_head < head) { | |
| head = new_head; | |
| } | |
| return true; | |
| } | |
| void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { | |
| if (seq_id_src == seq_id_dst) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) { | |
| kv_cell & tail_src = cells[seq_id_src]; | |
| kv_cell & tail_dst = cells[seq_id_dst]; | |
| if (tail_dst.tail >= 0) { | |
| // clear destination seq_id if it wasn't empty | |
| kv_cell & cell_dst = cells[tail_dst.tail]; | |
| cell_dst.seq_id.erase(seq_id_dst); | |
| tail_dst.tail = -1; | |
| if (cell_dst.seq_id.empty()) { | |
| cell_dst.pos = -1; | |
| cell_dst.src = -1; | |
| used -= 1; | |
| } | |
| } | |
| if (tail_src.tail >= 0) { | |
| kv_cell & cell_src = cells[tail_src.tail]; | |
| cell_src.seq_id.insert(seq_id_dst); | |
| tail_dst.tail = tail_src.tail; | |
| } | |
| } | |
| } | |
| void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) { | |
| uint32_t new_head = size; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if ((llama_seq_id) i != seq_id) { | |
| cells[i].tail = -1; | |
| } | |
| if (!cells[i].has_seq_id(seq_id)) { | |
| if (cells[i].pos >= 0) { | |
| used--; | |
| } | |
| cells[i].pos = -1; | |
| cells[i].src = -1; | |
| cells[i].seq_id.clear(); | |
| if (new_head == size){ | |
| new_head = i; | |
| } | |
| } else { | |
| cells[i].seq_id.clear(); | |
| cells[i].seq_id.insert(seq_id); | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != size && new_head < head) { | |
| head = new_head; | |
| } | |
| } | |
| void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { | |
| if (delta == 0) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // If there is no range then return early to avoid looping over the | |
| if (p0 == p1) { | |
| return; | |
| } | |
| // for Mamba-like or RWKV models, only the pos needs to be shifted | |
| if (0 <= seq_id && seq_id < (int64_t) size) { | |
| const int32_t tail_id = cells[seq_id].tail; | |
| if (tail_id >= 0) { | |
| kv_cell & cell = cells[tail_id]; | |
| if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { | |
| cell.pos += delta; | |
| } | |
| } | |
| } | |
| } | |
| void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { | |
| if (d == 1) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // If there is no range then return early to avoid looping over the cache. | |
| if (p0 == p1) { | |
| return; | |
| } | |
| // for Mamba-like or RWKV models, only the pos needs to be changed | |
| if (0 <= seq_id && seq_id < (int64_t) size) { | |
| const int32_t tail_id = cells[seq_id].tail; | |
| if (tail_id >= 0) { | |
| kv_cell & cell = cells[tail_id]; | |
| if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { | |
| cell.pos /= d; | |
| } | |
| } | |
| } | |
| } | |
| llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const { | |
| llama_pos result = 0; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (cells[i].has_seq_id(seq_id)) { | |
| result = std::max(result, cells[i].pos); | |
| } | |
| } | |
| return result; | |
| } | |
| void llama_kv_cache_recurrent::restore() { | |
| if (pending.ranges.empty()) { | |
| return; | |
| } | |
| seq_rm(-1, -1, -1); | |
| } | |
| void llama_kv_cache_recurrent::commit() { | |
| pending.ranges.clear(); | |
| } | |
| bool llama_kv_cache_recurrent::update(llama_context & lctx) { | |
| GGML_UNUSED(lctx); | |
| return false; | |
| } | |
| void llama_kv_cache_recurrent::defrag_sched(float thold) { | |
| GGML_UNUSED(thold); | |
| // noop | |
| } | |
| void llama_kv_cache_recurrent::set_full() { | |
| n = size; | |
| } | |
| llama_sbatch llama_kv_cache_recurrent::sbatch_init( | |
| const llama_batch & batch, | |
| bool logits_all) { | |
| return llama_sbatch(batch, hparams.n_embd, false, logits_all); | |
| } | |
| llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const { | |
| if (embd_pooled) { | |
| // Pooled embeddings cannot be split across ubatches (yet) | |
| return sbatch.split_seq(n_ubatch); | |
| } | |
| return sbatch.split_equal(n_ubatch); | |
| } | |
| bool llama_kv_cache_recurrent::find_slot( | |
| const llama_ubatch & ubatch) { | |
| const uint32_t n_tokens = ubatch.n_tokens; | |
| const uint32_t n_seqs = ubatch.n_seqs; | |
| const uint32_t n_seq_tokens = ubatch.n_seq_tokens; | |
| // if we have enough unused cells before the current head -> | |
| // better to start searching from the beginning of the cache, hoping to fill it | |
| if (head > used + 2*n_tokens) { | |
| head = 0; | |
| } | |
| // For recurrent state architectures (like Mamba or RWKV), | |
| // each cache cell can store the state for a whole sequence. | |
| // A slot should be always be contiguous. | |
| // can only process batches with an equal number of new tokens in each sequence | |
| GGML_ASSERT(ubatch.equal_seqs); | |
| int32_t min = size - 1; | |
| int32_t max = 0; | |
| // everything should fit if all seq_ids are smaller than the max | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| const uint32_t n_seq_id = ubatch.n_seq_id[s]; | |
| for (uint32_t j = 0; j < n_seq_id; ++j) { | |
| const llama_seq_id seq_id = ubatch.seq_id[s][j]; | |
| if (seq_id < 0 || (uint32_t) seq_id >= size) { | |
| // too big seq_id | |
| // TODO: would it be possible to resize the cache instead? | |
| LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size); | |
| return false; | |
| } | |
| if (j > 0) { | |
| kv_cell & seq = cells[seq_id]; | |
| if (seq.tail >= 0) { | |
| kv_cell & cell = cells[seq.tail]; | |
| // clear cells from seq_ids that become shared | |
| // (should not normally happen, but let's handle it anyway) | |
| cell.seq_id.erase(seq_id); | |
| seq.tail = -1; | |
| if (cell.seq_id.empty()) { | |
| cell.pos = -1; | |
| cell.src = -1; | |
| used -= 1; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| { | |
| std::vector<int32_t> tails_verif; | |
| tails_verif.assign(size, -1); | |
| for (uint32_t i = 0; i < size; ++i) { | |
| kv_cell & cell = cells[i]; | |
| for (llama_seq_id seq_id : cell.seq_id) { | |
| if (tails_verif[seq_id] != -1) { | |
| LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); | |
| } | |
| tails_verif[seq_id] = i; | |
| } | |
| } | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (tails_verif[i] != cells[i].tail) { | |
| LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]); | |
| } | |
| } | |
| } | |
| // find next empty cell | |
| uint32_t next_empty_cell = head; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (next_empty_cell >= size) { next_empty_cell -= size; } | |
| kv_cell & cell = cells[next_empty_cell]; | |
| if (cell.is_empty()) { break; } | |
| next_empty_cell += 1; | |
| } | |
| // find usable cell range | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
| kv_cell & seq_meta = cells[seq_id]; | |
| bool has_cell = false; | |
| if (seq_meta.tail >= 0) { | |
| kv_cell & cell = cells[seq_meta.tail]; | |
| GGML_ASSERT(cell.has_seq_id(seq_id)); | |
| // does this seq_id "own" the cell? | |
| if (cell.seq_id.size() == 1) { has_cell = true; } | |
| } | |
| if (!has_cell) { | |
| kv_cell & empty_cell = cells[next_empty_cell]; | |
| GGML_ASSERT(empty_cell.is_empty()); | |
| // copy old tail into the empty cell | |
| if (seq_meta.tail >= 0) { | |
| kv_cell & orig_cell = cells[seq_meta.tail]; | |
| empty_cell.pos = orig_cell.pos; | |
| empty_cell.src = orig_cell.src; | |
| orig_cell.seq_id.erase(seq_id); | |
| empty_cell.seq_id.insert(seq_id); // will be overwritten | |
| } | |
| seq_meta.tail = next_empty_cell; | |
| // find next empty cell | |
| if (s + 1 < n_seqs) { | |
| next_empty_cell += 1; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| if (next_empty_cell >= size) { next_empty_cell -= size; } | |
| kv_cell & cell = cells[next_empty_cell]; | |
| if (cell.is_empty()) { break; } | |
| next_empty_cell += 1; | |
| } | |
| } | |
| } | |
| if (min > seq_meta.tail) { min = seq_meta.tail; } | |
| if (max < seq_meta.tail) { max = seq_meta.tail; } | |
| } | |
| // gather and re-order | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| int32_t dst_id = s + min; | |
| int32_t src_id = cells[ubatch.seq_id[s][0]].tail; | |
| if (dst_id != src_id) { | |
| kv_cell & dst_cell = cells[dst_id]; | |
| kv_cell & src_cell = cells[src_id]; | |
| std::swap(dst_cell.pos, src_cell.pos); | |
| std::swap(dst_cell.src, src_cell.src); | |
| std::swap(dst_cell.seq_id, src_cell.seq_id); | |
| // swap tails (assuming they NEVER overlap) | |
| for (const llama_seq_id seq_id : src_cell.seq_id) { | |
| cells[seq_id].tail = src_id; | |
| } | |
| for (const llama_seq_id seq_id : dst_cell.seq_id) { | |
| cells[seq_id].tail = dst_id; | |
| } | |
| } | |
| } | |
| // update the pos of the used seqs | |
| for (uint32_t s = 0; s < n_seqs; ++s) { | |
| const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1]; | |
| int32_t cell_id = s + min; | |
| kv_cell & cell = cells[cell_id]; | |
| if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { | |
| // What should happen when the pos backtracks or skips a value? | |
| // Clearing the state mid-batch would require special-casing which isn't done. | |
| LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n", | |
| __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens); | |
| } | |
| cell.pos = last_pos; | |
| cell.seq_id.clear(); | |
| for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) { | |
| const llama_seq_id seq_id = ubatch.seq_id[s][j]; | |
| cell.seq_id.insert(seq_id); | |
| cells[seq_id].tail = cell_id; | |
| } | |
| } | |
| // allow getting the range of used cells, from head to head + n | |
| head = min; | |
| n = max - min + 1; | |
| used = std::count_if(cells.begin(), cells.end(), | |
| [](const kv_cell & cell){ return !cell.is_empty(); }); | |
| // sanity check | |
| return n >= n_seqs; | |
| } | |
| int32_t llama_kv_cache_recurrent::get_n_tokens() const { | |
| int32_t result = 0; | |
| for (uint32_t i = 0; i < size; i++) { | |
| result += cells[i].seq_id.size(); | |
| } | |
| return result; | |
| } | |
| int32_t llama_kv_cache_recurrent::get_used_cells() const { | |
| return used; | |
| } | |
| llama_pos llama_kv_cache_recurrent::get_pos_max() const { | |
| llama_pos pos_max = -1; | |
| for (const auto & cell : cells) { | |
| pos_max = std::max(pos_max, cell.pos); | |
| } | |
| return pos_max; | |
| } | |
| bool llama_kv_cache_recurrent::get_can_shift() const { | |
| return false; | |
| } | |
| int32_t llama_kv_cache_recurrent::s_copy(int i) const { | |
| const uint32_t cell_id = i + head; | |
| ////////////////////////////////////////////// | |
| // TODO: this should not mutate the KV cache ! | |
| kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]); | |
| // prevent out-of-bound sources | |
| if (cell.src < 0 || (uint32_t) cell.src >= size) { | |
| cell.src = cell_id; | |
| } | |
| int32_t res = cell.src; | |
| // TODO: do not mutate the KV cache | |
| // ensure copy only happens once | |
| if (cell.src != (int32_t) cell_id) { | |
| cell.src = cell_id; | |
| } | |
| return res; | |
| } | |
| float llama_kv_cache_recurrent::s_mask(int i) const { | |
| const uint32_t cell_id = i + head; | |
| ////////////////////////////////////////////// | |
| // TODO: this should not mutate the KV cache ! | |
| kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]); | |
| float res = (float) (cell.src >= 0); | |
| // only clear once | |
| if (cell.src < 0) { | |
| cell.src = cell_id; | |
| } | |
| return res; | |
| } | |
| uint32_t llama_kv_cache_recurrent::cell_max() const { | |
| for (uint32_t i = size; i > 0; --i) { | |
| const kv_cell & cell = cells[i - 1]; | |
| if (cell.pos >= 0 && !cell.is_empty()) { | |
| return i; | |
| } | |
| } | |
| return 0; | |
| } | |
| size_t llama_kv_cache_recurrent::total_size() const { | |
| size_t size = 0; | |
| for (const auto & buf : bufs) { | |
| size += ggml_backend_buffer_get_size(buf.get()); | |
| } | |
| return size; | |
| } | |
| size_t llama_kv_cache_recurrent::size_k_bytes() const { | |
| size_t size_k_bytes = 0; | |
| for (const auto & k : k_l) { | |
| size_k_bytes += ggml_nbytes(k); | |
| } | |
| return size_k_bytes; | |
| } | |
| size_t llama_kv_cache_recurrent::size_v_bytes() const { | |
| size_t size_v_bytes = 0; | |
| for (const auto & v : v_l) { | |
| size_v_bytes += ggml_nbytes(v); | |
| } | |
| return size_v_bytes; | |
| } | |
| void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { | |
| std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive | |
| uint32_t cell_count = 0; | |
| // Count the number of cells with the specified seq_id | |
| // Find all the ranges of cells with this seq id (or all, when -1) | |
| uint32_t cell_range_begin = size; | |
| for (uint32_t i = 0; i < size; ++i) { | |
| const auto & cell = cells[i]; | |
| if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { | |
| ++cell_count; | |
| if (cell_range_begin == size) { | |
| cell_range_begin = i; | |
| } | |
| } else { | |
| if (cell_range_begin != size) { | |
| cell_ranges.emplace_back(cell_range_begin, i); | |
| cell_range_begin = size; | |
| } | |
| } | |
| } | |
| if (cell_range_begin != size) { | |
| cell_ranges.emplace_back(cell_range_begin, size); | |
| } | |
| // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count | |
| uint32_t cell_count_check = 0; | |
| for (const auto & range : cell_ranges) { | |
| cell_count_check += range.second - range.first; | |
| } | |
| GGML_ASSERT(cell_count == cell_count_check); | |
| io.write(&cell_count, sizeof(cell_count)); | |
| state_write_meta(io, cell_ranges, seq_id); | |
| state_write_data(io, cell_ranges); | |
| } | |
| void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) { | |
| uint32_t cell_count; | |
| io.read_to(&cell_count, sizeof(cell_count)); | |
| bool res = true; | |
| res = res && state_read_meta(io, cell_count, seq_id); | |
| res = res && state_read_data(io, cell_count); | |
| if (!res) { | |
| if (seq_id == -1) { | |
| clear(); | |
| } else { | |
| seq_rm(seq_id, -1, -1); | |
| } | |
| throw std::runtime_error("failed to restore kv cache"); | |
| } | |
| } | |
| void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const { | |
| for (const auto & range : cell_ranges) { | |
| for (uint32_t i = range.first; i < range.second; ++i) { | |
| const auto & cell = cells[i]; | |
| const llama_pos pos = cell.pos; | |
| const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; | |
| io.write(&pos, sizeof(pos)); | |
| io.write(&n_seq_id, sizeof(n_seq_id)); | |
| if (n_seq_id) { | |
| for (auto seq_id : cell.seq_id) { | |
| io.write(&seq_id, sizeof(seq_id)); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const { | |
| const uint32_t v_trans = 0; | |
| const uint32_t n_layer = hparams.n_layer; | |
| io.write(&v_trans, sizeof(v_trans)); | |
| io.write(&n_layer, sizeof(n_layer)); | |
| std::vector<uint8_t> tmp_buf; | |
| // Iterate and write all the keys first, each row is a cell | |
| // Get whole range at a time | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); | |
| // Write key type | |
| const int32_t k_type_i = (int32_t)k_l[il]->type; | |
| io.write(&k_type_i, sizeof(k_type_i)); | |
| // Write row size of key | |
| const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); | |
| io.write(&k_size_row, sizeof(k_size_row)); | |
| // Read each range of cells of k_size length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t buf_size = range_size * k_size_row; | |
| io.write_tensor(k_l[il], range.first * k_size_row, buf_size); | |
| } | |
| } | |
| if (!v_trans) { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Write value type | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| io.write(&v_type_i, sizeof(v_type_i)); | |
| // Write row size of value | |
| const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); | |
| io.write(&v_size_row, sizeof(v_size_row)); | |
| // Read each range of cells of v_size length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t buf_size = range_size * v_size_row; | |
| io.write_tensor(v_l[il], range.first * v_size_row, buf_size); | |
| } | |
| } | |
| } else { | |
| // When v is transposed, we also need the element size and get the element ranges from each row | |
| const uint32_t kv_size = size; | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Write value type | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| io.write(&v_type_i, sizeof(v_type_i)); | |
| // Write element size | |
| const uint32_t v_size_el = ggml_type_size(v_l[il]->type); | |
| io.write(&v_size_el, sizeof(v_size_el)); | |
| // Write GQA embedding size | |
| io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); | |
| // For each row, we get the element values of each cell | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| // Read each range of cells of v_size_el length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t src_offset = (range.first + j * kv_size) * v_size_el; | |
| const size_t buf_size = range_size * v_size_el; | |
| io.write_tensor(v_l[il], src_offset, buf_size); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { | |
| if (dest_seq_id != -1) { | |
| // single sequence | |
| seq_rm(dest_seq_id, -1, -1); | |
| llama_sbatch sbatch; | |
| llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); | |
| batch.n_tokens = cell_count; | |
| batch.n_seq_tokens = cell_count; | |
| batch.n_seqs = 1; | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| llama_pos pos; | |
| uint32_t n_seq_id; | |
| io.read_to(&pos, sizeof(pos)); | |
| io.read_to(&n_seq_id, sizeof(n_seq_id)); | |
| if (n_seq_id != 0) { | |
| LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); | |
| return false; | |
| } | |
| batch.pos[i] = pos; | |
| } | |
| batch.n_seq_id[0] = 1; | |
| batch.seq_id[0] = &dest_seq_id; | |
| if (!find_slot(batch)) { | |
| LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); | |
| return false; | |
| } | |
| commit(); | |
| // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) | |
| // Assume that this is one contiguous block of cells | |
| GGML_ASSERT(head + cell_count <= size); | |
| GGML_ASSERT(cells[head].pos == batch.pos[0]); | |
| GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]); | |
| GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); | |
| GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); | |
| } else { | |
| // whole KV cache restore | |
| if (cell_count > size) { | |
| LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); | |
| return false; | |
| } | |
| clear(); | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| kv_cell & cell = cells[i]; | |
| llama_pos pos; | |
| uint32_t n_seq_id; | |
| io.read_to(&pos, sizeof(pos)); | |
| io.read_to(&n_seq_id, sizeof(n_seq_id)); | |
| cell.pos = pos; | |
| for (uint32_t j = 0; j < n_seq_id; ++j) { | |
| llama_seq_id seq_id; | |
| io.read_to(&seq_id, sizeof(seq_id)); | |
| // TODO: llama_kv_cache_recurrent should have a notion of max sequences | |
| //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { | |
| if (seq_id < 0) { | |
| //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); | |
| LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id); | |
| return false; | |
| } | |
| cell.seq_id.insert(seq_id); | |
| int32_t & tail = cells[seq_id].tail; | |
| if (tail != -1) { | |
| LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail); | |
| return false; | |
| } | |
| tail = i; | |
| } | |
| } | |
| head = 0; | |
| used = cell_count; | |
| } | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| uint32_t cell_id = head + i; | |
| // make sure the recurrent states will keep their restored state | |
| cells[cell_id].src = cell_id; | |
| } | |
| return true; | |
| } | |
| bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { | |
| uint32_t v_trans; | |
| uint32_t n_layer; | |
| io.read_to(&v_trans, sizeof(v_trans)); | |
| io.read_to(&n_layer, sizeof(n_layer)); | |
| if (n_layer != hparams.n_layer) { | |
| LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); | |
| return false; | |
| } | |
| if (cell_count > size) { | |
| LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); | |
| return false; | |
| } | |
| if (false != (bool) v_trans) { | |
| LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); | |
| return false; | |
| } | |
| // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); | |
| // Read type of key | |
| int32_t k_type_i_ref; | |
| io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); | |
| const int32_t k_type_i = (int32_t) k_l[il]->type; | |
| if (k_type_i != k_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); | |
| return false; | |
| } | |
| // Read row size of key | |
| uint64_t k_size_row_ref; | |
| io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); | |
| const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); | |
| if (k_size_row != k_size_row_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // Read and set the keys for the whole cell range | |
| ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); | |
| } | |
| } | |
| if (!v_trans) { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Read type of value | |
| int32_t v_type_i_ref; | |
| io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| if (v_type_i != v_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
| return false; | |
| } | |
| // Read row size of value | |
| uint64_t v_size_row_ref; | |
| io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); | |
| const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); | |
| if (v_size_row != v_size_row_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // Read and set the values for the whole cell range | |
| ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); | |
| } | |
| } | |
| } else { | |
| // For each layer, read the values for each cell (transposed) | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
| // Read type of value | |
| int32_t v_type_i_ref; | |
| io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
| const int32_t v_type_i = (int32_t)v_l[il]->type; | |
| if (v_type_i != v_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
| return false; | |
| } | |
| // Read element size of value | |
| uint32_t v_size_el_ref; | |
| io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); | |
| const size_t v_size_el = ggml_type_size(v_l[il]->type); | |
| if (v_size_el != v_size_el_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); | |
| return false; | |
| } | |
| // Read GQA embedding size | |
| uint32_t n_embd_v_gqa_ref; | |
| io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); | |
| if (n_embd_v_gqa != n_embd_v_gqa_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // For each row in the transposed matrix, read the values for the whole cell range | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| const size_t dst_offset = (head + j * size) * v_size_el; | |
| ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); | |
| } | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| // | |
| // kv cache view | |
| // | |
| llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max) { | |
| llama_kv_cache_view result = { | |
| /*.n_cells = */ 0, | |
| /*.n_seq_max = */ n_seq_max, | |
| /*.token_count = */ 0, | |
| /*.used_cells = */ kv.get_used_cells(), | |
| /*.max_contiguous = */ 0, | |
| /*.max_contiguous_idx = */ -1, | |
| /*.cells = */ nullptr, | |
| /*.cells_sequences = */ nullptr, | |
| }; | |
| return result; | |
| } | |
| void llama_kv_cache_view_free(llama_kv_cache_view * view) { | |
| if (view->cells != nullptr) { | |
| free(view->cells); | |
| view->cells = nullptr; | |
| } | |
| if (view->cells_sequences != nullptr) { | |
| free(view->cells_sequences); | |
| view->cells_sequences = nullptr; | |
| } | |
| } | |
| void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv) { | |
| // TODO: rework this in the future, for now quick hack | |
| const llama_kv_cache_unified * kvu = dynamic_cast<const llama_kv_cache_unified *>(kv); | |
| if (kvu == nullptr) { | |
| LLAMA_LOG_ERROR("%s: the kv_cache_view currently works only with llama_kv_cache_unified\n", __func__); | |
| return; | |
| } | |
| if (uint32_t(view->n_cells) < kvu->size || view->cells == nullptr) { | |
| view->n_cells = int32_t(kvu->size); | |
| void * p = realloc(view->cells, sizeof(llama_kv_cache_view_cell) * view->n_cells); | |
| GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells"); | |
| view->cells = (llama_kv_cache_view_cell *)p; | |
| p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells); | |
| GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences"); | |
| view->cells_sequences = (llama_seq_id *)p; | |
| } | |
| const std::vector<llama_kv_cache_unified::kv_cell> & kv_cells = kvu->cells; | |
| llama_kv_cache_view_cell * c_curr = view->cells; | |
| llama_seq_id * cs_curr = view->cells_sequences; | |
| int32_t used_cells = 0; | |
| int32_t token_count = 0; | |
| int32_t curr_contig_idx = -1; | |
| uint32_t max_contig = 0; | |
| int32_t max_contig_idx = -1; | |
| for (int32_t i = 0; i < int32_t(kvu->size); i++, c_curr++, cs_curr += view->n_seq_max) { | |
| const size_t curr_size = kv_cells[i].seq_id.size(); | |
| token_count += curr_size; | |
| c_curr->pos = kv_cells[i].pos + kv_cells[i].delta; | |
| if (curr_size > 0) { | |
| if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) { | |
| max_contig = i - curr_contig_idx; | |
| max_contig_idx = curr_contig_idx; | |
| } | |
| curr_contig_idx = -1; | |
| } else if (curr_contig_idx < 0) { | |
| curr_contig_idx = i; | |
| } | |
| int seq_idx = 0; | |
| for (const llama_seq_id it : kv_cells[i].seq_id) { | |
| if (seq_idx >= view->n_seq_max) { | |
| break; | |
| } | |
| cs_curr[seq_idx] = it; | |
| seq_idx++; | |
| } | |
| if (seq_idx != 0) { | |
| used_cells++; | |
| } | |
| for (; seq_idx < view->n_seq_max; seq_idx++) { | |
| cs_curr[seq_idx] = -1; | |
| } | |
| } | |
| if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) { | |
| max_contig_idx = curr_contig_idx; | |
| max_contig = kv_cells.size() - curr_contig_idx; | |
| } | |
| view->max_contiguous = max_contig; | |
| view->max_contiguous_idx = max_contig_idx; | |
| view->token_count = token_count; | |
| view->used_cells = used_cells; | |
| if (uint32_t(used_cells) != kvu->used) { | |
| LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n", | |
| __func__, kvu->used, used_cells); | |
| } | |
| } | |