Spaces:
Sleeping
Sleeping
| struct llama_cparams; | |
| struct llama_hparams; | |
| struct llama_ubatch; | |
| struct llama_sbatch; | |
| struct llama_model; | |
| struct llama_context; | |
| struct llama_kv_cache : public llama_memory_i { | |
| virtual ~llama_kv_cache() = default; | |
| // call if batch processing fails - restores the cache state | |
| virtual void restore() = 0; | |
| // call after successful batch processing - clears any pending state | |
| virtual void commit() = 0; | |
| // process any pending defrag/shift/etc. operations | |
| // optionally call once before processing a new batch | |
| virtual bool update(llama_context & lctx) = 0; | |
| // schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing | |
| virtual void defrag_sched(float thold) = 0; | |
| // simulate full cache, used for allocating worst-case compute buffers | |
| virtual void set_full() = 0; | |
| // | |
| // batch processing | |
| // | |
| virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0; | |
| // different KV caches require different batch splitting strategies | |
| virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0; | |
| // find an empty slot of size "n_tokens" in the cache | |
| virtual bool find_slot(const llama_ubatch & batch) = 0; | |
| // getters | |
| virtual int32_t get_n_tokens() const = 0; | |
| virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache | |
| virtual llama_pos get_pos_max() const = 0; | |
| virtual bool get_can_shift() const = 0; | |
| bool get_can_edit() const override { return get_can_shift(); } | |
| // | |
| // state write/read | |
| // | |
| virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0; | |
| virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0; | |
| }; | |
| // | |
| // llama_kv_cache_guard | |
| // | |
| struct llama_kv_cache_guard { | |
| llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {} | |
| ~llama_kv_cache_guard() { | |
| kv->restore(); | |
| } | |
| void commit() { | |
| kv->commit(); | |
| } | |
| private: | |
| llama_kv_cache * kv; | |
| }; | |
| // | |
| // llama_kv_cache_unified | |
| // | |
| // TODO: add notion of max sequences | |
| class llama_kv_cache_unified : public llama_kv_cache { | |
| public: | |
| struct kv_cell { | |
| llama_pos pos = -1; | |
| llama_pos delta = 0; | |
| std::set<llama_seq_id> seq_id; | |
| bool has_seq_id(const llama_seq_id & id) const { | |
| return seq_id.find(id) != seq_id.end(); | |
| } | |
| bool is_empty() const { | |
| return seq_id.empty(); | |
| } | |
| bool is_same_seq(const kv_cell & other) const { | |
| return seq_id == other.seq_id; | |
| } | |
| }; | |
| static uint32_t get_padding(const llama_cparams & cparams); | |
| llama_kv_cache_unified( | |
| const llama_model & model, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| bool v_trans, | |
| bool offload, | |
| uint32_t kv_size, | |
| uint32_t padding); | |
| ~llama_kv_cache_unified() = default; | |
| // | |
| // llama_memory_i | |
| // | |
| void clear() override; | |
| bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; | |
| void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; | |
| void seq_keep(llama_seq_id seq_id) override; | |
| void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override; | |
| void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; | |
| llama_pos seq_pos_max(llama_seq_id seq_id) const override; | |
| // | |
| // llama_kv_cache | |
| // | |
| void restore() override; | |
| void commit() override; | |
| bool update(llama_context & ctx) override; | |
| void defrag_sched(float thold) override; | |
| void set_full() override; | |
| llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; | |
| llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; | |
| // updates the cache head | |
| // Note: On success, it's important that cache.head points | |
| // to the first cell of the slot. | |
| bool find_slot(const llama_ubatch & batch) override; | |
| int32_t get_n_tokens() const override; | |
| int32_t get_used_cells() const override; | |
| // TODO: better data structures to reduce the cost of this operation | |
| llama_pos get_pos_max() const override; | |
| bool get_can_shift() const override; | |
| // state write/load | |
| void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; | |
| void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; | |
| // Note: The value of head isn't only used to optimize searching | |
| // for a free KV slot. llama_decode_impl also uses it, so it | |
| // cannot be freely changed after a slot has been allocated. | |
| uint32_t head = 0; | |
| uint32_t size = 0; | |
| uint32_t used = 0; // used cells (i.e. at least one seq_id) | |
| // computed before each graph build | |
| uint32_t n = 0; | |
| std::vector<kv_cell> cells; | |
| std::vector<ggml_tensor *> k_l; // per layer | |
| std::vector<ggml_tensor *> v_l; | |
| private: | |
| const llama_model & model; | |
| const llama_hparams & hparams; | |
| bool has_shift = false; | |
| bool do_defrag = false; | |
| bool v_trans = true; // the value tensor is transposed | |
| bool can_shift = false; | |
| // required padding | |
| uint32_t padding = 1; | |
| ggml_type type_k = GGML_TYPE_F16; | |
| ggml_type type_v = GGML_TYPE_F16; | |
| std::vector<ggml_context_ptr> ctxs; | |
| std::vector<ggml_backend_buffer_ptr> bufs; | |
| // defrag | |
| struct { | |
| std::vector<uint32_t> ids; | |
| } defrag_info; | |
| // return true if cells have been moved | |
| bool defrag_prepare(int32_t n_max_nodes); | |
| // commit/restore cache | |
| struct slot_range { | |
| uint32_t c0 = 0; // note: these are cell indices, not sequence positions | |
| uint32_t c1 = 0; | |
| }; | |
| // pending cell updates that are not yet committed | |
| struct { | |
| std::vector<slot_range> ranges; | |
| } pending; | |
| // find how many cells are currently in use | |
| uint32_t cell_max() const; | |
| size_t total_size() const; | |
| size_t size_k_bytes() const; | |
| size_t size_v_bytes() const; | |
| ggml_tensor * build_rope_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_tensor * cur, | |
| ggml_tensor * shift, | |
| ggml_tensor * factors, | |
| float freq_base, | |
| float freq_scale) const; | |
| llm_graph_result_ptr build_graph_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_cgraph * gf) const; | |
| llm_graph_result_ptr build_graph_defrag( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_cgraph * gf) const; | |
| void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const; | |
| void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const; | |
| bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); | |
| bool state_read_data(llama_io_read_i & io, uint32_t cell_count); | |
| }; | |
| // | |
| // llama_kv_cache_recurrent | |
| // | |
| class llama_kv_cache_recurrent : public llama_kv_cache { | |
| public: | |
| struct kv_cell { | |
| llama_pos pos = -1; | |
| int32_t src = -1; // used to copy states | |
| int32_t tail = -1; | |
| std::set<llama_seq_id> seq_id; | |
| bool has_seq_id(const llama_seq_id & id) const { | |
| return seq_id.find(id) != seq_id.end(); | |
| } | |
| bool is_empty() const { | |
| return seq_id.empty(); | |
| } | |
| bool is_same_seq(const kv_cell & other) const { | |
| return seq_id == other.seq_id; | |
| } | |
| }; | |
| llama_kv_cache_recurrent( | |
| const llama_model & model, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| bool offload, | |
| uint32_t kv_size); | |
| ~llama_kv_cache_recurrent() = default; | |
| // | |
| // llama_memory_i | |
| // | |
| void clear() override; | |
| bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; | |
| void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; | |
| void seq_keep(llama_seq_id seq_id) override; | |
| void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override; | |
| void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; | |
| llama_pos seq_pos_max(llama_seq_id seq_id) const override; | |
| // | |
| // llama_kv_cache | |
| // | |
| void restore() override; | |
| void commit() override; | |
| bool update(llama_context & lctx) override; | |
| void defrag_sched(float thold) override; | |
| void set_full() override; | |
| llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; | |
| llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; | |
| bool find_slot(const llama_ubatch & batch) override; | |
| int32_t get_n_tokens() const override; | |
| int32_t get_used_cells() const override; | |
| // TODO: better data structures to reduce the cost of this operation | |
| llama_pos get_pos_max() const override; | |
| bool get_can_shift() const override; | |
| // TODO: temporary methods - they are not really const as they do const_cast<>, fix this | |
| int32_t s_copy(int i) const; | |
| float s_mask(int i) const; | |
| // state write/load | |
| void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; | |
| void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; | |
| // Note: The value of head isn't only used to optimize searching | |
| // for a free KV slot. llama_decode_impl also uses it, so it | |
| // cannot be freely changed after a slot has been allocated. | |
| uint32_t head = 0; | |
| uint32_t size = 0; | |
| uint32_t used = 0; // used cells (i.e. at least one seq_id) | |
| // computed before each graph build | |
| uint32_t n = 0; | |
| std::vector<kv_cell> cells; | |
| std::vector<ggml_tensor *> k_l; // per layer | |
| std::vector<ggml_tensor *> v_l; | |
| private: | |
| //const llama_model & model; | |
| const llama_hparams & hparams; | |
| // commit/restore cache | |
| // TODO: rework for recurrent cache | |
| struct slot_range { | |
| uint32_t c0 = 0; // note: these are cell indices, not sequence positions | |
| uint32_t c1 = 0; | |
| }; | |
| // pending cell updates that are not yet committed | |
| struct { | |
| std::vector<slot_range> ranges; | |
| } pending; | |
| ggml_type type_k = GGML_TYPE_F16; | |
| ggml_type type_v = GGML_TYPE_F16; | |
| std::vector<ggml_context_ptr> ctxs; | |
| std::vector<ggml_backend_buffer_ptr> bufs; | |
| // find how many cells are currently in use | |
| uint32_t cell_max() const; | |
| size_t total_size() const; | |
| size_t size_k_bytes() const; | |
| size_t size_v_bytes() const; | |
| void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const; | |
| void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const; | |
| bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); | |
| bool state_read_data(llama_io_read_i & io, uint32_t cell_count); | |
| }; | |
| // | |
| // kv cache view | |
| // | |
| llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max); | |
| void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv); | |