Diego Devesa commited on
Commit
0f447f2
·
1 Parent(s): b6bfa42

ggml : move CPU backend to a separate file (llama/10144)

Browse files
ggml/include/ggml-backend.h CHANGED
@@ -305,27 +305,10 @@ extern "C" {
305
  GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
306
  GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
307
 
308
- //
309
- // CPU backend
310
- //
311
-
312
- GGML_API ggml_backend_t ggml_backend_cpu_init(void);
313
-
314
- GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
315
- GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
316
- GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
317
- GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
318
-
319
- // Create a backend buffer from an existing pointer
320
  GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
321
  GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
322
 
323
- GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
324
-
325
- #ifdef GGML_USE_CPU_HBM
326
- GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
327
- #endif
328
-
329
  #ifdef __cplusplus
330
  }
331
  #endif
 
305
  GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
306
  GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
307
 
308
+ // CPU buffer types are always available
 
 
 
 
 
 
 
 
 
 
 
309
  GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
310
  GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
311
 
 
 
 
 
 
 
312
  #ifdef __cplusplus
313
  }
314
  #endif
ggml/include/ggml-cpu.h ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+ #include "ggml-backend.h"
5
+
6
+ #ifdef __cplusplus
7
+ extern "C" {
8
+ #endif
9
+
10
+ // Scheduling priorities
11
+ enum ggml_sched_priority {
12
+ GGML_SCHED_PRIO_NORMAL,
13
+ GGML_SCHED_PRIO_MEDIUM,
14
+ GGML_SCHED_PRIO_HIGH,
15
+ GGML_SCHED_PRIO_REALTIME
16
+ };
17
+
18
+ // Threadpool params
19
+ // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
20
+ struct ggml_threadpool_params {
21
+ bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
22
+ int n_threads; // number of threads
23
+ enum ggml_sched_priority prio; // thread priority
24
+ uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
25
+ bool strict_cpu; // strict cpu placement
26
+ bool paused; // start in paused state
27
+ };
28
+
29
+ struct ggml_threadpool; // forward declaration, see ggml.c
30
+
31
+ typedef struct ggml_threadpool * ggml_threadpool_t;
32
+
33
+ // the compute plan that needs to be prepared for ggml_graph_compute()
34
+ // since https://github.com/ggerganov/ggml/issues/287
35
+ struct ggml_cplan {
36
+ size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
37
+ uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
38
+
39
+ int n_threads;
40
+ struct ggml_threadpool * threadpool;
41
+
42
+ // abort ggml_graph_compute when true
43
+ ggml_abort_callback abort_callback;
44
+ void * abort_callback_data;
45
+ };
46
+
47
+ // numa strategies
48
+ enum ggml_numa_strategy {
49
+ GGML_NUMA_STRATEGY_DISABLED = 0,
50
+ GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
51
+ GGML_NUMA_STRATEGY_ISOLATE = 2,
52
+ GGML_NUMA_STRATEGY_NUMACTL = 3,
53
+ GGML_NUMA_STRATEGY_MIRROR = 4,
54
+ GGML_NUMA_STRATEGY_COUNT
55
+ };
56
+
57
+ GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
58
+ GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
59
+
60
+ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
61
+ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
62
+
63
+ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
64
+ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
65
+
66
+ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
67
+ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
68
+
69
+ GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
70
+ GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
71
+
72
+ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
73
+ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
74
+
75
+ GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
76
+ GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
77
+
78
+ GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
79
+ GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
80
+ GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
81
+ GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
82
+ GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
83
+ GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
84
+ GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
85
+ GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
86
+
87
+ // ggml_graph_plan() has to be called before ggml_graph_compute()
88
+ // when plan.work_size > 0, caller must allocate memory for plan.work_data
89
+ GGML_API struct ggml_cplan ggml_graph_plan(
90
+ const struct ggml_cgraph * cgraph,
91
+ int n_threads, /* = GGML_DEFAULT_N_THREADS */
92
+ struct ggml_threadpool * threadpool /* = NULL */ );
93
+ GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
94
+
95
+ // same as ggml_graph_compute() but the work data is allocated as a part of the context
96
+ // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
97
+ GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
98
+
99
+ // TODO: move to backend interface
100
+ GGML_API int ggml_cpu_has_neon (void);
101
+ GGML_API int ggml_cpu_has_sve (void);
102
+ GGML_API int ggml_cpu_has_matmul_int8(void);
103
+ // get the sve vector length in bytes
104
+ GGML_API int ggml_cpu_get_sve_cnt(void);
105
+
106
+ // Internal types and functions exposed for tests and benchmarks
107
+
108
+ typedef void (*ggml_from_float_to_mat_t)
109
+ (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
110
+ typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
111
+ const void * GGML_RESTRICT y, size_t by, int nrc);
112
+ typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
113
+ const void * GGML_RESTRICT y, int nr, int nc);
114
+ typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
115
+ const void * GGML_RESTRICT y, int nr, int nc);
116
+
117
+ struct ggml_type_traits_cpu {
118
+ ggml_from_float_to_mat_t from_float_to_mat;
119
+ ggml_vec_dot_t vec_dot;
120
+ enum ggml_type vec_dot_type;
121
+ int64_t nrows; // number of rows to process simultaneously
122
+ int64_t ncols; // number of columns to process simultaneously
123
+ ggml_gemv_t gemv;
124
+ ggml_gemm_t gemm;
125
+ };
126
+
127
+ GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
128
+
129
+ GGML_API void ggml_cpu_init(void);
130
+
131
+ //
132
+ // CPU backend
133
+ //
134
+
135
+ GGML_API ggml_backend_t ggml_backend_cpu_init(void);
136
+
137
+ GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
138
+ GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
139
+ GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
140
+ GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
141
+
142
+ GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
143
+
144
+ #ifdef GGML_USE_CPU_HBM
145
+ GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
146
+ #endif
147
+
148
+ #ifdef __cplusplus
149
+ }
150
+ #endif
ggml/include/ggml.h CHANGED
@@ -573,6 +573,13 @@ extern "C" {
573
  GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
574
  };
575
 
 
 
 
 
 
 
 
576
  // n-dimensional tensor
577
  struct ggml_tensor {
578
  enum ggml_type type;
@@ -618,59 +625,6 @@ extern "C" {
618
  // If it returns true, the computation is aborted
619
  typedef bool (*ggml_abort_callback)(void * data);
620
 
621
- // Scheduling priorities
622
- enum ggml_sched_priority {
623
- GGML_SCHED_PRIO_NORMAL,
624
- GGML_SCHED_PRIO_MEDIUM,
625
- GGML_SCHED_PRIO_HIGH,
626
- GGML_SCHED_PRIO_REALTIME
627
- };
628
-
629
- // Threadpool params
630
- // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
631
- struct ggml_threadpool_params {
632
- bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
633
- int n_threads; // number of threads
634
- enum ggml_sched_priority prio; // thread priority
635
- uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
636
- bool strict_cpu; // strict cpu placement
637
- bool paused; // start in paused state
638
- };
639
-
640
- struct ggml_threadpool; // forward declaration, see ggml.c
641
-
642
- typedef struct ggml_threadpool * ggml_threadpool_t;
643
-
644
- // the compute plan that needs to be prepared for ggml_graph_compute()
645
- // since https://github.com/ggerganov/ggml/issues/287
646
- struct ggml_cplan {
647
- size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
648
- uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
649
-
650
- int n_threads;
651
- struct ggml_threadpool * threadpool;
652
-
653
- // abort ggml_graph_compute when true
654
- ggml_abort_callback abort_callback;
655
- void * abort_callback_data;
656
- };
657
-
658
- struct ggml_init_params {
659
- // memory pool
660
- size_t mem_size; // bytes
661
- void * mem_buffer; // if NULL, memory will be allocated internally
662
- bool no_alloc; // don't allocate memory for the tensor data
663
- };
664
-
665
- // numa strategies
666
- enum ggml_numa_strategy {
667
- GGML_NUMA_STRATEGY_DISABLED = 0,
668
- GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
669
- GGML_NUMA_STRATEGY_ISOLATE = 2,
670
- GGML_NUMA_STRATEGY_NUMACTL = 3,
671
- GGML_NUMA_STRATEGY_MIRROR = 4,
672
- GGML_NUMA_STRATEGY_COUNT
673
- };
674
 
675
  //
676
  // GUID
@@ -693,9 +647,6 @@ extern "C" {
693
  // accepts a UTF-8 path, even on Windows
694
  GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
695
 
696
- GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
697
- GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
698
-
699
  GGML_API void ggml_print_object (const struct ggml_object * obj);
700
  GGML_API void ggml_print_objects(const struct ggml_context * ctx);
701
 
@@ -797,8 +748,7 @@ extern "C" {
797
  int64_t ne2,
798
  int64_t ne3);
799
 
800
- GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
801
- GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
802
 
803
  GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
804
  GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
@@ -808,35 +758,25 @@ extern "C" {
808
  GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
809
  GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
810
 
811
- GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
812
- GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
813
- GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
814
-
815
  // Converts a flat index into coordinates
816
- GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
817
-
818
- GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
819
- GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
820
-
821
- GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
822
- GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
823
-
824
- GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
825
- GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
826
 
827
- GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
828
- GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
829
 
830
  GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
831
  GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
832
 
833
- GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
834
-
835
  GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
836
  GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
837
  GGML_ATTRIBUTE_FORMAT(2, 3)
838
  GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
839
 
 
 
 
 
 
 
840
  //
841
  // operations on tensors with backpropagation
842
  //
@@ -2052,9 +1992,6 @@ extern "C" {
2052
  // automatic differentiation
2053
  //
2054
 
2055
- GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
2056
- GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
2057
-
2058
  GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
2059
  GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
2060
 
@@ -2086,27 +2023,6 @@ extern "C" {
2086
  GGML_API size_t ggml_graph_overhead(void);
2087
  GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
2088
 
2089
- GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
2090
- GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
2091
- GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
2092
- GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
2093
- GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
2094
- GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
2095
- GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
2096
- GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
2097
-
2098
- // ggml_graph_plan() has to be called before ggml_graph_compute()
2099
- // when plan.work_size > 0, caller must allocate memory for plan.work_data
2100
- GGML_API struct ggml_cplan ggml_graph_plan(
2101
- const struct ggml_cgraph * cgraph,
2102
- int n_threads, /* = GGML_DEFAULT_N_THREADS */
2103
- struct ggml_threadpool * threadpool /* = NULL */ );
2104
- GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
2105
-
2106
- // same as ggml_graph_compute() but the work data is allocated as a part of the context
2107
- // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
2108
- GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
2109
-
2110
  GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
2111
 
2112
  GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
@@ -2277,6 +2193,8 @@ extern "C" {
2277
  } lbfgs;
2278
  };
2279
 
 
 
2280
  GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
2281
 
2282
  // optimize the function defined by the tensor f
@@ -2308,12 +2226,6 @@ extern "C" {
2308
  ggml_opt_callback callback,
2309
  void * callback_data);
2310
 
2311
- //
2312
- // tensor flags
2313
- //
2314
- GGML_API void ggml_set_input(struct ggml_tensor * tensor);
2315
- GGML_API void ggml_set_output(struct ggml_tensor * tensor);
2316
-
2317
  //
2318
  // quantization
2319
  //
@@ -2482,8 +2394,6 @@ extern "C" {
2482
  GGML_API int ggml_cpu_has_avx512_bf16(void);
2483
  GGML_API int ggml_cpu_has_amx_int8 (void);
2484
  GGML_API int ggml_cpu_has_fma (void);
2485
- GGML_API int ggml_cpu_has_neon (void);
2486
- GGML_API int ggml_cpu_has_sve (void);
2487
  GGML_API int ggml_cpu_has_arm_fma (void);
2488
  GGML_API int ggml_cpu_has_metal (void);
2489
  GGML_API int ggml_cpu_has_f16c (void);
@@ -2500,17 +2410,9 @@ extern "C" {
2500
  GGML_API int ggml_cpu_has_sycl (void);
2501
  GGML_API int ggml_cpu_has_rpc (void);
2502
  GGML_API int ggml_cpu_has_vsx (void);
2503
- GGML_API int ggml_cpu_has_matmul_int8(void);
2504
  GGML_API int ggml_cpu_has_cann (void);
2505
  GGML_API int ggml_cpu_has_llamafile (void);
2506
 
2507
- // get the sve vector length in bytes
2508
- GGML_API int ggml_cpu_get_sve_cnt(void);
2509
-
2510
- //
2511
- // Internal types and functions exposed for tests and benchmarks
2512
- //
2513
-
2514
  #ifdef __cplusplus
2515
  // restrict not standard in C++
2516
  #define GGML_RESTRICT
@@ -2519,14 +2421,6 @@ extern "C" {
2519
  #endif
2520
  typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
2521
  typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
2522
- typedef void (*ggml_from_float_to_mat_t)
2523
- (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
2524
- typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
2525
- const void * GGML_RESTRICT y, size_t by, int nrc);
2526
- typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
2527
- const void * GGML_RESTRICT y, int nr, int nc);
2528
- typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
2529
- const void * GGML_RESTRICT y, int nr, int nc);
2530
 
2531
  struct ggml_type_traits {
2532
  const char * type_name;
@@ -2537,13 +2431,6 @@ extern "C" {
2537
  ggml_to_float_t to_float;
2538
  ggml_from_float_t from_float;
2539
  ggml_from_float_t from_float_ref;
2540
- ggml_from_float_to_mat_t from_float_to_mat;
2541
- ggml_vec_dot_t vec_dot;
2542
- enum ggml_type vec_dot_type;
2543
- int64_t nrows; // number of rows to process simultaneously
2544
- int64_t ncols; // number of columns to process simultaneously
2545
- ggml_gemv_t gemv;
2546
- ggml_gemm_t gemm;
2547
  };
2548
 
2549
  GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
 
573
  GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
574
  };
575
 
576
+ struct ggml_init_params {
577
+ // memory pool
578
+ size_t mem_size; // bytes
579
+ void * mem_buffer; // if NULL, memory will be allocated internally
580
+ bool no_alloc; // don't allocate memory for the tensor data
581
+ };
582
+
583
  // n-dimensional tensor
584
  struct ggml_tensor {
585
  enum ggml_type type;
 
625
  // If it returns true, the computation is aborted
626
  typedef bool (*ggml_abort_callback)(void * data);
627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628
 
629
  //
630
  // GUID
 
647
  // accepts a UTF-8 path, even on Windows
648
  GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
649
 
 
 
 
650
  GGML_API void ggml_print_object (const struct ggml_object * obj);
651
  GGML_API void ggml_print_objects(const struct ggml_context * ctx);
652
 
 
748
  int64_t ne2,
749
  int64_t ne3);
750
 
751
+ GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
 
752
 
753
  GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
754
  GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
 
758
  GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
759
  GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
760
 
 
 
 
 
761
  // Converts a flat index into coordinates
762
+ GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
 
 
 
 
 
 
 
 
 
763
 
764
+ GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
 
765
 
766
  GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
767
  GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
768
 
 
 
769
  GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
770
  GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
771
  GGML_ATTRIBUTE_FORMAT(2, 3)
772
  GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
773
 
774
+ // Tensor flags
775
+ GGML_API void ggml_set_input(struct ggml_tensor * tensor);
776
+ GGML_API void ggml_set_output(struct ggml_tensor * tensor);
777
+ GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
778
+ GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
779
+
780
  //
781
  // operations on tensors with backpropagation
782
  //
 
1992
  // automatic differentiation
1993
  //
1994
 
 
 
 
1995
  GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
1996
  GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
1997
 
 
2023
  GGML_API size_t ggml_graph_overhead(void);
2024
  GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026
  GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
2027
 
2028
  GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
 
2193
  } lbfgs;
2194
  };
2195
 
2196
+ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
2197
+
2198
  GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
2199
 
2200
  // optimize the function defined by the tensor f
 
2226
  ggml_opt_callback callback,
2227
  void * callback_data);
2228
 
 
 
 
 
 
 
2229
  //
2230
  // quantization
2231
  //
 
2394
  GGML_API int ggml_cpu_has_avx512_bf16(void);
2395
  GGML_API int ggml_cpu_has_amx_int8 (void);
2396
  GGML_API int ggml_cpu_has_fma (void);
 
 
2397
  GGML_API int ggml_cpu_has_arm_fma (void);
2398
  GGML_API int ggml_cpu_has_metal (void);
2399
  GGML_API int ggml_cpu_has_f16c (void);
 
2410
  GGML_API int ggml_cpu_has_sycl (void);
2411
  GGML_API int ggml_cpu_has_rpc (void);
2412
  GGML_API int ggml_cpu_has_vsx (void);
 
2413
  GGML_API int ggml_cpu_has_cann (void);
2414
  GGML_API int ggml_cpu_has_llamafile (void);
2415
 
 
 
 
 
 
 
 
2416
  #ifdef __cplusplus
2417
  // restrict not standard in C++
2418
  #define GGML_RESTRICT
 
2421
  #endif
2422
  typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
2423
  typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
 
 
 
 
 
 
 
 
2424
 
2425
  struct ggml_type_traits {
2426
  const char * type_name;
 
2431
  ggml_to_float_t to_float;
2432
  ggml_from_float_t from_float;
2433
  ggml_from_float_t from_float_ref;
 
 
 
 
 
 
 
2434
  };
2435
 
2436
  GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
ggml/src/CMakeLists.txt CHANGED
@@ -1366,10 +1366,12 @@ endif()
1366
 
1367
  add_library(ggml
1368
  ../include/ggml.h
 
1369
  ../include/ggml-alloc.h
1370
  ../include/ggml-backend.h
1371
  ../include/ggml-cpp.h
1372
  ggml.c
 
1373
  ggml-alloc.c
1374
  ggml-backend.cpp
1375
  ggml-quants.c
 
1366
 
1367
  add_library(ggml
1368
  ../include/ggml.h
1369
+ ../include/ggml-cpu.h
1370
  ../include/ggml-alloc.h
1371
  ../include/ggml-backend.h
1372
  ../include/ggml-cpp.h
1373
  ggml.c
1374
+ ggml-cpu.c
1375
  ggml-alloc.c
1376
  ggml-backend.cpp
1377
  ggml-quants.c
ggml/src/ggml-aarch64.c CHANGED
@@ -7,6 +7,7 @@
7
 
8
  #include "ggml-quants.h"
9
  #include "ggml-impl.h"
 
10
  #include "ggml-cpu-impl.h"
11
 
12
  #include <math.h>
 
7
 
8
  #include "ggml-quants.h"
9
  #include "ggml-impl.h"
10
+ #include "ggml-cpu.h"
11
  #include "ggml-cpu-impl.h"
12
 
13
  #include <math.h>
ggml/src/ggml-backend.cpp CHANGED
The diff for this file is too large to render. See raw diff
 
ggml/src/ggml-cpu.c ADDED
The diff for this file is too large to render. See raw diff
 
ggml/src/ggml-impl.h CHANGED
@@ -8,6 +8,7 @@
8
  #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
9
  #include <stdbool.h>
10
  #include <stdint.h>
 
11
 
12
  #ifdef __cplusplus
13
  extern "C" {
@@ -36,6 +37,20 @@ extern "C" {
36
  #endif
37
  #endif
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  //
40
  // logging
41
  //
@@ -51,6 +66,74 @@ void ggml_log_callback_default(enum ggml_log_level level, const char * text, voi
51
  #define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
52
  #define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  // bitset
55
 
56
  typedef uint32_t ggml_bitset_t;
@@ -204,6 +287,10 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
204
  void * ggml_aligned_malloc(size_t size);
205
  void ggml_aligned_free(void * ptr, size_t size);
206
 
 
 
 
 
207
  #ifdef __cplusplus
208
  }
209
  #endif
 
8
  #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
9
  #include <stdbool.h>
10
  #include <stdint.h>
11
+ #include <string.h>
12
 
13
  #ifdef __cplusplus
14
  extern "C" {
 
37
  #endif
38
  #endif
39
 
40
+ static inline int ggml_up32(int n) {
41
+ return (n + 31) & ~31;
42
+ }
43
+
44
+ //static inline int ggml_up64(int n) {
45
+ // return (n + 63) & ~63;
46
+ //}
47
+
48
+ static inline int ggml_up(int n, int m) {
49
+ // assert m is a power of 2
50
+ GGML_ASSERT((m & (m - 1)) == 0);
51
+ return (n + m - 1) & ~(m - 1);
52
+ }
53
+
54
  //
55
  // logging
56
  //
 
66
  #define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
67
  #define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
68
 
69
+ #define GGML_DEBUG 0
70
+
71
+ #if (GGML_DEBUG >= 1)
72
+ #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
73
+ #else
74
+ #define GGML_PRINT_DEBUG(...)
75
+ #endif
76
+
77
+ #if (GGML_DEBUG >= 5)
78
+ #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
79
+ #else
80
+ #define GGML_PRINT_DEBUG_5(...)
81
+ #endif
82
+
83
+ #if (GGML_DEBUG >= 10)
84
+ #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
85
+ #else
86
+ #define GGML_PRINT_DEBUG_10(...)
87
+ #endif
88
+
89
+ // tensor params
90
+
91
+ static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
92
+ GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
93
+ assert(params_size <= GGML_MAX_OP_PARAMS);
94
+ memcpy(tensor->op_params, params, params_size);
95
+ }
96
+
97
+ static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
98
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
99
+ return ((const int32_t *)(tensor->op_params))[i];
100
+ }
101
+
102
+ static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
103
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
104
+ return ((const float *)(tensor->op_params))[i];
105
+ }
106
+
107
+ static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
108
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
109
+ ((int32_t *)(tensor->op_params))[i] = value;
110
+ }
111
+
112
+ static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
113
+ assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
114
+ ((float *)(tensor->op_params))[i] = value;
115
+ }
116
+
117
+ struct ggml_map_custom1_op_params {
118
+ ggml_custom1_op_t fun;
119
+ int n_tasks;
120
+ void * userdata;
121
+ };
122
+
123
+
124
+ struct ggml_map_custom2_op_params {
125
+ ggml_custom2_op_t fun;
126
+ int n_tasks;
127
+ void * userdata;
128
+ };
129
+
130
+
131
+ struct ggml_map_custom3_op_params {
132
+ ggml_custom3_op_t fun;
133
+ int n_tasks;
134
+ void * userdata;
135
+ };
136
+
137
  // bitset
138
 
139
  typedef uint32_t ggml_bitset_t;
 
287
  void * ggml_aligned_malloc(size_t size);
288
  void ggml_aligned_free(void * ptr, size_t size);
289
 
290
+ // TODO: move to threading file
291
+ void ggml_critical_section_start(void);
292
+ void ggml_critical_section_end(void);
293
+
294
  #ifdef __cplusplus
295
  }
296
  #endif
ggml/src/ggml-rpc.cpp CHANGED
@@ -1296,13 +1296,6 @@ static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_b
1296
  UNUSED(dev);
1297
  }
1298
 
1299
- static ggml_backend_buffer_t ggml_backend_rpc_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
1300
- return ggml_backend_cpu_buffer_from_ptr(ptr, size);
1301
-
1302
- UNUSED(dev);
1303
- UNUSED(max_tensor_size);
1304
- }
1305
-
1306
  static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
1307
  UNUSED(dev);
1308
  UNUSED(op);
@@ -1328,7 +1321,7 @@ static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
1328
  /* .init_backend = */ ggml_backend_rpc_device_init,
1329
  /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
1330
  /* .get_host_buffer_type = */ NULL,
1331
- /* .buffer_from_host_ptr = */ ggml_backend_rpc_device_buffer_from_ptr,
1332
  /* .supports_op = */ ggml_backend_rpc_device_supports_op,
1333
  /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
1334
  /* .offload_op = */ NULL,
 
1296
  UNUSED(dev);
1297
  }
1298
 
 
 
 
 
 
 
 
1299
  static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
1300
  UNUSED(dev);
1301
  UNUSED(op);
 
1321
  /* .init_backend = */ ggml_backend_rpc_device_init,
1322
  /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
1323
  /* .get_host_buffer_type = */ NULL,
1324
+ /* .buffer_from_host_ptr = */ NULL,
1325
  /* .supports_op = */ ggml_backend_rpc_device_supports_op,
1326
  /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
1327
  /* .offload_op = */ NULL,
ggml/src/ggml.c CHANGED
The diff for this file is too large to render. See raw diff