Spaces:
Running
Running
files : remove old sources
Browse files
examples/whisper.android/lib/src/main/jni/whisper/CMakeLists.txt
CHANGED
|
@@ -21,7 +21,6 @@ if (NOT GGML_HOME)
|
|
| 21 |
SOURCE_FILES
|
| 22 |
${SOURCE_FILES}
|
| 23 |
${WHISPER_LIB_DIR}/ggml/src/ggml.c
|
| 24 |
-
${WHISPER_LIB_DIR}/ggml/src/ggml-aarch64.c
|
| 25 |
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
|
| 26 |
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.cpp
|
| 27 |
${WHISPER_LIB_DIR}/ggml/src/ggml-backend-reg.cpp
|
|
@@ -29,7 +28,7 @@ if (NOT GGML_HOME)
|
|
| 29 |
${WHISPER_LIB_DIR}/ggml/src/ggml-threading.cpp
|
| 30 |
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu.c
|
| 31 |
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu.cpp
|
| 32 |
-
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-aarch64.
|
| 33 |
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-quants.c
|
| 34 |
)
|
| 35 |
endif()
|
|
|
|
| 21 |
SOURCE_FILES
|
| 22 |
${SOURCE_FILES}
|
| 23 |
${WHISPER_LIB_DIR}/ggml/src/ggml.c
|
|
|
|
| 24 |
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
|
| 25 |
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.cpp
|
| 26 |
${WHISPER_LIB_DIR}/ggml/src/ggml-backend-reg.cpp
|
|
|
|
| 28 |
${WHISPER_LIB_DIR}/ggml/src/ggml-threading.cpp
|
| 29 |
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu.c
|
| 30 |
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu.cpp
|
| 31 |
+
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
|
| 32 |
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-quants.c
|
| 33 |
)
|
| 34 |
endif()
|
ggml/src/ggml-aarch64.c
DELETED
|
@@ -1,129 +0,0 @@
|
|
| 1 |
-
#define GGML_COMMON_DECL_C
|
| 2 |
-
#include "ggml-common.h"
|
| 3 |
-
|
| 4 |
-
#include "ggml-aarch64.h"
|
| 5 |
-
#include "ggml-impl.h"
|
| 6 |
-
#include "ggml-quants.h"
|
| 7 |
-
#include <assert.h>
|
| 8 |
-
|
| 9 |
-
#define UNUSED GGML_UNUSED
|
| 10 |
-
|
| 11 |
-
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
|
| 12 |
-
block_q4_0x4 out;
|
| 13 |
-
|
| 14 |
-
for (int i = 0; i < 4; i++) {
|
| 15 |
-
out.d[i] = in[i].d;
|
| 16 |
-
}
|
| 17 |
-
|
| 18 |
-
const int end = QK4_0 * 2 / blck_size_interleave;
|
| 19 |
-
|
| 20 |
-
if (blck_size_interleave == 8) {
|
| 21 |
-
const uint64_t xor_mask = 0x8888888888888888ULL;
|
| 22 |
-
for (int i = 0; i < end; ++i) {
|
| 23 |
-
int src_id = i % 4;
|
| 24 |
-
int src_offset = (i / 4) * blck_size_interleave;
|
| 25 |
-
int dst_offset = i * blck_size_interleave;
|
| 26 |
-
|
| 27 |
-
uint64_t elems;
|
| 28 |
-
// Using memcpy to avoid unaligned memory accesses
|
| 29 |
-
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
|
| 30 |
-
elems ^= xor_mask;
|
| 31 |
-
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
|
| 32 |
-
}
|
| 33 |
-
} else if (blck_size_interleave == 4) {
|
| 34 |
-
const uint32_t xor_mask = 0x88888888;
|
| 35 |
-
for (int i = 0; i < end; ++i) {
|
| 36 |
-
int src_id = i % 4;
|
| 37 |
-
int src_offset = (i / 4) * blck_size_interleave;
|
| 38 |
-
int dst_offset = i * blck_size_interleave;
|
| 39 |
-
|
| 40 |
-
uint32_t elems;
|
| 41 |
-
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t));
|
| 42 |
-
elems ^= xor_mask;
|
| 43 |
-
memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t));
|
| 44 |
-
}
|
| 45 |
-
} else {
|
| 46 |
-
GGML_ASSERT(false);
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
return out;
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
// interleave 8 block_q4_0s in blocks of blck_size_interleave
|
| 53 |
-
// returns an interleaved block_q4_0x8
|
| 54 |
-
// in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
|
| 55 |
-
// first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
|
| 56 |
-
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) {
|
| 57 |
-
block_q4_0x8 out;
|
| 58 |
-
|
| 59 |
-
for (int i = 0; i < 8; i++) {
|
| 60 |
-
out.d[i] = in[i].d;
|
| 61 |
-
}
|
| 62 |
-
|
| 63 |
-
const int end = QK4_0 * 4 / blck_size_interleave;
|
| 64 |
-
const uint64_t xor_mask = 0x8888888888888888ULL;
|
| 65 |
-
|
| 66 |
-
for (int i = 0; i < end; ++i) {
|
| 67 |
-
int src_id = i % 8;
|
| 68 |
-
int src_offset = (i / 8) * blck_size_interleave;
|
| 69 |
-
int dst_offset = i * blck_size_interleave;
|
| 70 |
-
|
| 71 |
-
uint64_t elems;
|
| 72 |
-
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
|
| 73 |
-
elems ^= xor_mask;
|
| 74 |
-
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
return out;
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, int nrows_interleaved, int blck_size_interleave) {
|
| 81 |
-
assert(n_per_row % QK4_0 == 0);
|
| 82 |
-
const int nb = n_per_row / QK4_0;
|
| 83 |
-
|
| 84 |
-
void * out_ptr = NULL;
|
| 85 |
-
if (nrows_interleaved == 8) {
|
| 86 |
-
out_ptr = (block_q4_0x8 *) dst;
|
| 87 |
-
}
|
| 88 |
-
else if (nrows_interleaved == 4) {
|
| 89 |
-
out_ptr = (block_q4_0x4 *) dst;
|
| 90 |
-
}
|
| 91 |
-
assert(nrows_interleaved <= 8);
|
| 92 |
-
block_q4_0 dst_tmp[8];
|
| 93 |
-
|
| 94 |
-
for (int b = 0; b < (nrow * n_per_row); b += nrows_interleaved * n_per_row) {
|
| 95 |
-
|
| 96 |
-
for (int64_t x = 0; x < nb; x++) {
|
| 97 |
-
|
| 98 |
-
for (int i = 0; i < nrows_interleaved; i++ ) {
|
| 99 |
-
quantize_row_q4_0_ref(src + b + i * n_per_row + x * QK4_0, (block_q4_0 *) dst_tmp + i, QK4_0);
|
| 100 |
-
}
|
| 101 |
-
|
| 102 |
-
if (nrows_interleaved == 8) {
|
| 103 |
-
*(block_q4_0x8 *) out_ptr = make_block_q4_0x8(dst_tmp, blck_size_interleave);
|
| 104 |
-
out_ptr = (block_q4_0x8 *) out_ptr + 1;
|
| 105 |
-
}
|
| 106 |
-
else if (nrows_interleaved == 4) {
|
| 107 |
-
*(block_q4_0x4 *) out_ptr = make_block_q4_0x4(dst_tmp, blck_size_interleave);
|
| 108 |
-
out_ptr = (block_q4_0x4 *) out_ptr + 1;
|
| 109 |
-
}
|
| 110 |
-
}
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
return ((nrow * n_per_row) / QK4_0 * sizeof(block_q4_0));
|
| 114 |
-
}
|
| 115 |
-
|
| 116 |
-
size_t quantize_q4_0_4x4(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
| 117 |
-
UNUSED(quant_weights);
|
| 118 |
-
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
size_t quantize_q4_0_4x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
| 122 |
-
UNUSED(quant_weights);
|
| 123 |
-
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
|
| 124 |
-
}
|
| 125 |
-
|
| 126 |
-
size_t quantize_q4_0_8x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
| 127 |
-
UNUSED(quant_weights);
|
| 128 |
-
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
|
| 129 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-aarch64.h
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
#pragma once
|
| 2 |
-
|
| 3 |
-
#include "ggml.h"
|
| 4 |
-
|
| 5 |
-
// GGML internal header
|
| 6 |
-
|
| 7 |
-
#ifdef __cplusplus
|
| 8 |
-
extern "C" {
|
| 9 |
-
#endif
|
| 10 |
-
|
| 11 |
-
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
| 12 |
-
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
| 13 |
-
size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
| 14 |
-
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
| 15 |
-
|
| 16 |
-
#ifdef __cplusplus
|
| 17 |
-
}
|
| 18 |
-
#endif
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cpu/ggml-cpu-aarch64.c
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ggml/src/ggml-cuda/dmmv.cu
DELETED
|
@@ -1,699 +0,0 @@
|
|
| 1 |
-
#include "dmmv.cuh"
|
| 2 |
-
#include "dequantize.cuh"
|
| 3 |
-
#include "convert.cuh"
|
| 4 |
-
|
| 5 |
-
#ifndef K_QUANTS_PER_ITERATION
|
| 6 |
-
#define K_QUANTS_PER_ITERATION 2
|
| 7 |
-
#else
|
| 8 |
-
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
| 9 |
-
#endif
|
| 10 |
-
|
| 11 |
-
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
| 12 |
-
|
| 13 |
-
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
| 14 |
-
|
| 15 |
-
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
| 16 |
-
if (row > nrows) return;
|
| 17 |
-
|
| 18 |
-
const int num_blocks_per_row = ncols / QK_K;
|
| 19 |
-
const int ib0 = row*num_blocks_per_row;
|
| 20 |
-
|
| 21 |
-
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
| 22 |
-
|
| 23 |
-
float tmp = 0; // partial sum for thread in warp
|
| 24 |
-
|
| 25 |
-
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
| 26 |
-
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
| 27 |
-
|
| 28 |
-
const int step = 16/K_QUANTS_PER_ITERATION;
|
| 29 |
-
|
| 30 |
-
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
| 31 |
-
const int in = tid - step*im; // 0...15 or 0...7
|
| 32 |
-
|
| 33 |
-
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
| 34 |
-
const int q_offset = 32*im + l0;
|
| 35 |
-
const int s_offset = 8*im;
|
| 36 |
-
const int y_offset = 128*im + l0;
|
| 37 |
-
|
| 38 |
-
uint32_t aux[4];
|
| 39 |
-
const uint8_t * d = (const uint8_t *)aux;
|
| 40 |
-
const uint8_t * m = (const uint8_t *)(aux + 2);
|
| 41 |
-
|
| 42 |
-
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
| 43 |
-
|
| 44 |
-
const float * y = yy + i * QK_K + y_offset;
|
| 45 |
-
const uint8_t * q = x[i].qs + q_offset;
|
| 46 |
-
|
| 47 |
-
const float dall = __low2half(x[i].dm);
|
| 48 |
-
const float dmin = __high2half(x[i].dm);
|
| 49 |
-
|
| 50 |
-
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
| 51 |
-
aux[0] = a[0] & 0x0f0f0f0f;
|
| 52 |
-
aux[1] = a[1] & 0x0f0f0f0f;
|
| 53 |
-
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
| 54 |
-
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
| 55 |
-
|
| 56 |
-
float sum1 = 0, sum2 = 0;
|
| 57 |
-
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
| 58 |
-
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
| 59 |
-
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
| 60 |
-
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
| 61 |
-
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
| 62 |
-
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
| 63 |
-
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
| 64 |
-
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
| 65 |
-
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
| 66 |
-
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
| 67 |
-
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
| 68 |
-
|
| 69 |
-
}
|
| 70 |
-
tmp += dall * sum1 - dmin * sum2;
|
| 71 |
-
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
// sum up partial sums and write back result
|
| 75 |
-
tmp = warp_reduce_sum(tmp);
|
| 76 |
-
|
| 77 |
-
if (threadIdx.x == 0) {
|
| 78 |
-
dst[row] = tmp;
|
| 79 |
-
}
|
| 80 |
-
}
|
| 81 |
-
|
| 82 |
-
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
| 83 |
-
|
| 84 |
-
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
| 85 |
-
if (row > nrows) return;
|
| 86 |
-
|
| 87 |
-
const int num_blocks_per_row = ncols / QK_K;
|
| 88 |
-
const int ib0 = row*num_blocks_per_row;
|
| 89 |
-
|
| 90 |
-
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
| 91 |
-
|
| 92 |
-
float tmp = 0; // partial sum for thread in warp
|
| 93 |
-
|
| 94 |
-
const uint16_t kmask1 = 0x0303;
|
| 95 |
-
const uint16_t kmask2 = 0x0f0f;
|
| 96 |
-
|
| 97 |
-
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
| 98 |
-
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
| 99 |
-
|
| 100 |
-
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
| 101 |
-
const int step = 16/K_QUANTS_PER_ITERATION;
|
| 102 |
-
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
| 103 |
-
const int in = tid - step*im; // 0....15 or 0...7
|
| 104 |
-
|
| 105 |
-
const uint8_t m = 1 << (4*im);
|
| 106 |
-
|
| 107 |
-
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
| 108 |
-
const int q_offset = 32*im + l0;
|
| 109 |
-
const int y_offset = 128*im + l0;
|
| 110 |
-
|
| 111 |
-
uint16_t utmp[4];
|
| 112 |
-
const int8_t * s = (const int8_t *)utmp;
|
| 113 |
-
|
| 114 |
-
const uint16_t s_shift = 4*im;
|
| 115 |
-
|
| 116 |
-
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
| 117 |
-
|
| 118 |
-
const float * y = yy + i * QK_K + y_offset;
|
| 119 |
-
const uint8_t * q = x[i].qs + q_offset;
|
| 120 |
-
const uint8_t * h = x[i].hmask + l0;
|
| 121 |
-
|
| 122 |
-
const uint16_t * a = (const uint16_t *)x[i].scales;
|
| 123 |
-
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
| 124 |
-
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
| 125 |
-
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
| 126 |
-
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
| 127 |
-
|
| 128 |
-
const float d = x[i].d;
|
| 129 |
-
|
| 130 |
-
float sum = 0;
|
| 131 |
-
for (int l = 0; l < n; ++l) {
|
| 132 |
-
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
| 133 |
-
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
| 134 |
-
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
| 135 |
-
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
| 136 |
-
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
| 137 |
-
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
| 138 |
-
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
| 139 |
-
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
| 140 |
-
}
|
| 141 |
-
tmp += d * sum;
|
| 142 |
-
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
// sum up partial sums and write back result
|
| 146 |
-
tmp = warp_reduce_sum(tmp);
|
| 147 |
-
|
| 148 |
-
if (threadIdx.x == 0) {
|
| 149 |
-
dst[row] = tmp;
|
| 150 |
-
}
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
| 154 |
-
|
| 155 |
-
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
| 156 |
-
if (row > nrows) return;
|
| 157 |
-
const int num_blocks_per_row = ncols / QK_K;
|
| 158 |
-
const int ib0 = row*num_blocks_per_row;
|
| 159 |
-
|
| 160 |
-
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
| 161 |
-
|
| 162 |
-
const uint16_t kmask1 = 0x3f3f;
|
| 163 |
-
const uint16_t kmask2 = 0x0f0f;
|
| 164 |
-
const uint16_t kmask3 = 0xc0c0;
|
| 165 |
-
|
| 166 |
-
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
| 167 |
-
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
| 168 |
-
|
| 169 |
-
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
| 170 |
-
|
| 171 |
-
const int il = tid/step; // 0...3
|
| 172 |
-
const int ir = tid - step*il; // 0...7 or 0...3
|
| 173 |
-
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
| 174 |
-
|
| 175 |
-
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
| 176 |
-
const int in = il%2;
|
| 177 |
-
|
| 178 |
-
const int l0 = n*(2*ir + in);
|
| 179 |
-
const int q_offset = 32*im + l0;
|
| 180 |
-
const int y_offset = 64*im + l0;
|
| 181 |
-
|
| 182 |
-
uint16_t aux[4];
|
| 183 |
-
const uint8_t * sc = (const uint8_t *)aux;
|
| 184 |
-
|
| 185 |
-
#if K_QUANTS_PER_ITERATION == 2
|
| 186 |
-
uint32_t q32[4];
|
| 187 |
-
const uint8_t * q4 = (const uint8_t *)q32;
|
| 188 |
-
#else
|
| 189 |
-
uint16_t q16[4];
|
| 190 |
-
const uint8_t * q4 = (const uint8_t *)q16;
|
| 191 |
-
#endif
|
| 192 |
-
|
| 193 |
-
float tmp = 0; // partial sum for thread in warp
|
| 194 |
-
|
| 195 |
-
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
| 196 |
-
|
| 197 |
-
const float * y1 = yy + i*QK_K + y_offset;
|
| 198 |
-
const float * y2 = y1 + 128;
|
| 199 |
-
|
| 200 |
-
const float dall = __low2half(x[i].dm);
|
| 201 |
-
const float dmin = __high2half(x[i].dm);
|
| 202 |
-
|
| 203 |
-
const uint16_t * a = (const uint16_t *)x[i].scales;
|
| 204 |
-
aux[0] = a[im+0] & kmask1;
|
| 205 |
-
aux[1] = a[im+2] & kmask1;
|
| 206 |
-
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
| 207 |
-
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
| 208 |
-
|
| 209 |
-
#if K_QUANTS_PER_ITERATION == 2
|
| 210 |
-
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
| 211 |
-
const uint32_t * q2 = q1 + 16;
|
| 212 |
-
|
| 213 |
-
q32[0] = q1[0] & 0x0f0f0f0f;
|
| 214 |
-
q32[1] = q1[0] & 0xf0f0f0f0;
|
| 215 |
-
q32[2] = q2[0] & 0x0f0f0f0f;
|
| 216 |
-
q32[3] = q2[0] & 0xf0f0f0f0;
|
| 217 |
-
|
| 218 |
-
float4 s = {0.f, 0.f, 0.f, 0.f};
|
| 219 |
-
float smin = 0;
|
| 220 |
-
for (int l = 0; l < 4; ++l) {
|
| 221 |
-
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
| 222 |
-
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
| 223 |
-
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
| 224 |
-
}
|
| 225 |
-
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
| 226 |
-
#else
|
| 227 |
-
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
| 228 |
-
const uint16_t * q2 = q1 + 32;
|
| 229 |
-
|
| 230 |
-
q16[0] = q1[0] & 0x0f0f;
|
| 231 |
-
q16[1] = q1[0] & 0xf0f0;
|
| 232 |
-
q16[2] = q2[0] & 0x0f0f;
|
| 233 |
-
q16[3] = q2[0] & 0xf0f0;
|
| 234 |
-
|
| 235 |
-
float4 s = {0.f, 0.f, 0.f, 0.f};
|
| 236 |
-
float smin = 0;
|
| 237 |
-
for (int l = 0; l < 2; ++l) {
|
| 238 |
-
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
| 239 |
-
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
| 240 |
-
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
| 241 |
-
}
|
| 242 |
-
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
| 243 |
-
#endif
|
| 244 |
-
|
| 245 |
-
}
|
| 246 |
-
|
| 247 |
-
// sum up partial sums and write back result
|
| 248 |
-
tmp = warp_reduce_sum(tmp);
|
| 249 |
-
|
| 250 |
-
if (tid == 0) {
|
| 251 |
-
dst[row] = tmp;
|
| 252 |
-
}
|
| 253 |
-
}
|
| 254 |
-
|
| 255 |
-
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
| 256 |
-
|
| 257 |
-
const int row = blockIdx.x;
|
| 258 |
-
const int num_blocks_per_row = ncols / QK_K;
|
| 259 |
-
const int ib0 = row*num_blocks_per_row;
|
| 260 |
-
|
| 261 |
-
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
| 262 |
-
|
| 263 |
-
float tmp = 0; // partial sum for thread in warp
|
| 264 |
-
|
| 265 |
-
const uint16_t kmask1 = 0x3f3f;
|
| 266 |
-
const uint16_t kmask2 = 0x0f0f;
|
| 267 |
-
const uint16_t kmask3 = 0xc0c0;
|
| 268 |
-
|
| 269 |
-
const int tid = threadIdx.x/2; // 0...15
|
| 270 |
-
const int ix = threadIdx.x%2;
|
| 271 |
-
|
| 272 |
-
const int il = tid/4; // 0...3
|
| 273 |
-
const int ir = tid - 4*il;// 0...3
|
| 274 |
-
const int n = 2;
|
| 275 |
-
|
| 276 |
-
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
| 277 |
-
const int in = il%2;
|
| 278 |
-
|
| 279 |
-
const int l0 = n*(2*ir + in);
|
| 280 |
-
const int q_offset = 32*im + l0;
|
| 281 |
-
const int y_offset = 64*im + l0;
|
| 282 |
-
|
| 283 |
-
const uint8_t hm1 = 1 << (2*im);
|
| 284 |
-
const uint8_t hm2 = hm1 << 4;
|
| 285 |
-
|
| 286 |
-
uint16_t aux[4];
|
| 287 |
-
const uint8_t * sc = (const uint8_t *)aux;
|
| 288 |
-
|
| 289 |
-
uint16_t q16[8];
|
| 290 |
-
const uint8_t * q4 = (const uint8_t *)q16;
|
| 291 |
-
|
| 292 |
-
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
| 293 |
-
|
| 294 |
-
const uint8_t * ql1 = x[i].qs + q_offset;
|
| 295 |
-
const uint8_t * qh = x[i].qh + l0;
|
| 296 |
-
const float * y1 = yy + i*QK_K + y_offset;
|
| 297 |
-
const float * y2 = y1 + 128;
|
| 298 |
-
|
| 299 |
-
const float dall = __low2half(x[i].dm);
|
| 300 |
-
const float dmin = __high2half(x[i].dm);
|
| 301 |
-
|
| 302 |
-
const uint16_t * a = (const uint16_t *)x[i].scales;
|
| 303 |
-
aux[0] = a[im+0] & kmask1;
|
| 304 |
-
aux[1] = a[im+2] & kmask1;
|
| 305 |
-
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
| 306 |
-
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
| 307 |
-
|
| 308 |
-
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
| 309 |
-
float smin = 0;
|
| 310 |
-
const uint16_t * q1 = (const uint16_t *)ql1;
|
| 311 |
-
const uint16_t * q2 = q1 + 32;
|
| 312 |
-
q16[0] = q1[0] & 0x0f0f;
|
| 313 |
-
q16[1] = q1[8] & 0x0f0f;
|
| 314 |
-
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
| 315 |
-
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
| 316 |
-
q16[4] = q2[0] & 0x0f0f;
|
| 317 |
-
q16[5] = q2[8] & 0x0f0f;
|
| 318 |
-
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
| 319 |
-
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
| 320 |
-
for (int l = 0; l < n; ++l) {
|
| 321 |
-
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
| 322 |
-
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
| 323 |
-
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
| 324 |
-
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
| 325 |
-
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
| 326 |
-
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
| 327 |
-
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
| 328 |
-
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
| 329 |
-
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
| 330 |
-
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
| 331 |
-
}
|
| 332 |
-
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
| 333 |
-
}
|
| 334 |
-
|
| 335 |
-
// sum up partial sums and write back result
|
| 336 |
-
tmp = warp_reduce_sum(tmp);
|
| 337 |
-
|
| 338 |
-
if (threadIdx.x == 0) {
|
| 339 |
-
dst[row] = tmp;
|
| 340 |
-
}
|
| 341 |
-
}
|
| 342 |
-
|
| 343 |
-
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
| 344 |
-
|
| 345 |
-
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
| 346 |
-
|
| 347 |
-
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
| 348 |
-
if (row > nrows) return;
|
| 349 |
-
|
| 350 |
-
const int num_blocks_per_row = ncols / QK_K;
|
| 351 |
-
const int ib0 = row*num_blocks_per_row;
|
| 352 |
-
|
| 353 |
-
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
| 354 |
-
|
| 355 |
-
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
| 356 |
-
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
| 357 |
-
|
| 358 |
-
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
| 359 |
-
|
| 360 |
-
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
| 361 |
-
const int in = tid - step*im; // 0...15 or 0...7
|
| 362 |
-
|
| 363 |
-
#if K_QUANTS_PER_ITERATION == 1
|
| 364 |
-
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
| 365 |
-
const int is = 0;
|
| 366 |
-
#else
|
| 367 |
-
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
| 368 |
-
const int is = in / 4;
|
| 369 |
-
#endif
|
| 370 |
-
const int ql_offset = 64*im + l0;
|
| 371 |
-
const int qh_offset = 32*im + l0;
|
| 372 |
-
const int s_offset = 8*im + is;
|
| 373 |
-
const int y_offset = 128*im + l0;
|
| 374 |
-
|
| 375 |
-
float tmp = 0; // partial sum for thread in warp
|
| 376 |
-
|
| 377 |
-
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
| 378 |
-
|
| 379 |
-
const float * y = yy + i * QK_K + y_offset;
|
| 380 |
-
const uint8_t * ql = x[i].ql + ql_offset;
|
| 381 |
-
const uint8_t * qh = x[i].qh + qh_offset;
|
| 382 |
-
const int8_t * s = x[i].scales + s_offset;
|
| 383 |
-
|
| 384 |
-
const float d = x[i].d;
|
| 385 |
-
|
| 386 |
-
#if K_QUANTS_PER_ITERATION == 1
|
| 387 |
-
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
| 388 |
-
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
| 389 |
-
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
| 390 |
-
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
| 391 |
-
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
| 392 |
-
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
| 393 |
-
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
| 394 |
-
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
| 395 |
-
tmp += sum;
|
| 396 |
-
#else
|
| 397 |
-
float sum = 0;
|
| 398 |
-
for (int l = 0; l < 4; ++l) {
|
| 399 |
-
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
| 400 |
-
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
| 401 |
-
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
| 402 |
-
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
| 403 |
-
}
|
| 404 |
-
tmp += sum;
|
| 405 |
-
#endif
|
| 406 |
-
|
| 407 |
-
}
|
| 408 |
-
|
| 409 |
-
// sum up partial sums and write back result
|
| 410 |
-
tmp = warp_reduce_sum(tmp);
|
| 411 |
-
|
| 412 |
-
if (tid == 0) {
|
| 413 |
-
dst[row] = tmp;
|
| 414 |
-
}
|
| 415 |
-
}
|
| 416 |
-
|
| 417 |
-
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
| 418 |
-
const half * x = (const half *) vx;
|
| 419 |
-
// load 2 halfs into register in a single instruction
|
| 420 |
-
const half2 x_reg = *((half2 *) &(x[ib + iqs]));
|
| 421 |
-
// automatic half -> float type cast if dfloat == float
|
| 422 |
-
v.x = __low2float(x_reg);
|
| 423 |
-
v.y = __high2float(x_reg);
|
| 424 |
-
}
|
| 425 |
-
|
| 426 |
-
static constexpr __device__ dequantize_kernel_t get_dequantize_kernel(ggml_type type) {
|
| 427 |
-
return type == GGML_TYPE_Q4_0 ? dequantize_q4_0 :
|
| 428 |
-
type == GGML_TYPE_Q4_1 ? dequantize_q4_1 :
|
| 429 |
-
type == GGML_TYPE_Q5_0 ? dequantize_q5_0 :
|
| 430 |
-
type == GGML_TYPE_Q5_1 ? dequantize_q5_1 :
|
| 431 |
-
type == GGML_TYPE_Q8_0 ? dequantize_q8_0 :
|
| 432 |
-
type == GGML_TYPE_F16 ? convert_f16 :
|
| 433 |
-
nullptr;
|
| 434 |
-
}
|
| 435 |
-
|
| 436 |
-
template <ggml_type type>
|
| 437 |
-
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
| 438 |
-
constexpr int qk = ggml_cuda_type_traits<type>::qk; // quantized weights per x block
|
| 439 |
-
constexpr int qr = ggml_cuda_type_traits<type>::qr; // number of quantized weights per data value in x block
|
| 440 |
-
constexpr dequantize_kernel_t dequantize_kernel = get_dequantize_kernel(type);
|
| 441 |
-
|
| 442 |
-
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
|
| 443 |
-
|
| 444 |
-
if (row >= nrows) {
|
| 445 |
-
return;
|
| 446 |
-
}
|
| 447 |
-
|
| 448 |
-
const int tid = threadIdx.x;
|
| 449 |
-
|
| 450 |
-
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
| 451 |
-
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
| 452 |
-
const int y_offset = qr == 1 ? 1 : qk/2;
|
| 453 |
-
|
| 454 |
-
// partial sum for each thread
|
| 455 |
-
#ifdef GGML_CUDA_F16
|
| 456 |
-
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
| 457 |
-
#else
|
| 458 |
-
float tmp = 0.0f;
|
| 459 |
-
#endif // GGML_CUDA_F16
|
| 460 |
-
|
| 461 |
-
for (int i = 0; i < ncols; i += iter_stride) {
|
| 462 |
-
const int col = i + vals_per_iter*tid;
|
| 463 |
-
const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index
|
| 464 |
-
const int iqs = (col%qk)/qr; // x quant index
|
| 465 |
-
const int iybs = col - col%qk; // y block start index
|
| 466 |
-
|
| 467 |
-
// processing >2 values per i iter is faster for fast GPUs
|
| 468 |
-
#pragma unroll
|
| 469 |
-
for (int j = 0; j < vals_per_iter; j += 2) {
|
| 470 |
-
// process 2 vals per j iter
|
| 471 |
-
|
| 472 |
-
// dequantize
|
| 473 |
-
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
| 474 |
-
dfloat2 v;
|
| 475 |
-
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
| 476 |
-
|
| 477 |
-
// matrix multiplication
|
| 478 |
-
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
| 479 |
-
#ifdef GGML_CUDA_F16
|
| 480 |
-
if ( y_offset == 1 ) {
|
| 481 |
-
// load 2 dfloats into register in a single instruction
|
| 482 |
-
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
|
| 483 |
-
tmp += __hmul2(v, y_reg);
|
| 484 |
-
}
|
| 485 |
-
else {
|
| 486 |
-
tmp += __hmul2(v, {
|
| 487 |
-
y[iybs + iqs + j/qr + 0],
|
| 488 |
-
y[iybs + iqs + j/qr + y_offset]
|
| 489 |
-
});
|
| 490 |
-
}
|
| 491 |
-
#else
|
| 492 |
-
if ( y_offset == 1 ) {
|
| 493 |
-
// load 2 dfloats into register in a single instruction
|
| 494 |
-
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
|
| 495 |
-
tmp += v.x * y_reg.x;
|
| 496 |
-
tmp += v.y * y_reg.y;
|
| 497 |
-
}
|
| 498 |
-
else {
|
| 499 |
-
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
| 500 |
-
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
| 501 |
-
}
|
| 502 |
-
#endif // GGML_CUDA_F16
|
| 503 |
-
}
|
| 504 |
-
}
|
| 505 |
-
|
| 506 |
-
// sum up partial sums and write back result
|
| 507 |
-
tmp = warp_reduce_sum(tmp);
|
| 508 |
-
|
| 509 |
-
if (tid == 0) {
|
| 510 |
-
#ifdef GGML_CUDA_F16
|
| 511 |
-
dst[row] = tmp.x + tmp.y;
|
| 512 |
-
#else
|
| 513 |
-
dst[row] = tmp;
|
| 514 |
-
#endif // GGML_CUDA_F16
|
| 515 |
-
}
|
| 516 |
-
}
|
| 517 |
-
|
| 518 |
-
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 519 |
-
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
| 520 |
-
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 521 |
-
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
| 522 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 523 |
-
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 524 |
-
dequantize_mul_mat_vec<GGML_TYPE_Q4_0>
|
| 525 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 526 |
-
}
|
| 527 |
-
|
| 528 |
-
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 529 |
-
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
| 530 |
-
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 531 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 532 |
-
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 533 |
-
dequantize_mul_mat_vec<GGML_TYPE_Q4_1>
|
| 534 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 535 |
-
}
|
| 536 |
-
|
| 537 |
-
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 538 |
-
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
| 539 |
-
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 540 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 541 |
-
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 542 |
-
dequantize_mul_mat_vec<GGML_TYPE_Q5_0>
|
| 543 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 544 |
-
}
|
| 545 |
-
|
| 546 |
-
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 547 |
-
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
| 548 |
-
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 549 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 550 |
-
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 551 |
-
dequantize_mul_mat_vec<GGML_TYPE_Q5_1>
|
| 552 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 553 |
-
}
|
| 554 |
-
|
| 555 |
-
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 556 |
-
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
| 557 |
-
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 558 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 559 |
-
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 560 |
-
dequantize_mul_mat_vec<GGML_TYPE_Q8_0>
|
| 561 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 562 |
-
}
|
| 563 |
-
|
| 564 |
-
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 565 |
-
GGML_ASSERT(ncols % QK_K == 0);
|
| 566 |
-
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
| 567 |
-
const int block_num_y = (nrows + ny - 1) / ny;
|
| 568 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 569 |
-
const dim3 block_dims(32, ny, 1);
|
| 570 |
-
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 571 |
-
}
|
| 572 |
-
|
| 573 |
-
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 574 |
-
GGML_ASSERT(ncols % QK_K == 0);
|
| 575 |
-
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
| 576 |
-
const int block_num_y = (nrows + ny - 1) / ny;
|
| 577 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 578 |
-
const dim3 block_dims(32, ny, 1);
|
| 579 |
-
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 580 |
-
}
|
| 581 |
-
|
| 582 |
-
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 583 |
-
GGML_ASSERT(ncols % QK_K == 0);
|
| 584 |
-
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
| 585 |
-
const int block_num_y = (nrows + ny - 1) / ny;
|
| 586 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 587 |
-
const dim3 block_dims(32, ny, 1);
|
| 588 |
-
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 589 |
-
}
|
| 590 |
-
|
| 591 |
-
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 592 |
-
GGML_ASSERT(ncols % QK_K == 0);
|
| 593 |
-
const dim3 block_dims(32, 1, 1);
|
| 594 |
-
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
| 595 |
-
}
|
| 596 |
-
|
| 597 |
-
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 598 |
-
GGML_ASSERT(ncols % QK_K == 0);
|
| 599 |
-
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
| 600 |
-
const int block_num_y = (nrows + ny - 1) / ny;
|
| 601 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 602 |
-
const dim3 block_dims(32, ny, 1);
|
| 603 |
-
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 604 |
-
}
|
| 605 |
-
|
| 606 |
-
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
| 607 |
-
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
| 608 |
-
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 609 |
-
const dim3 block_nums(block_num_y, 1, 1);
|
| 610 |
-
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 611 |
-
dequantize_mul_mat_vec<GGML_TYPE_F16>
|
| 612 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 613 |
-
}
|
| 614 |
-
|
| 615 |
-
void ggml_cuda_op_dequantize_mul_mat_vec(
|
| 616 |
-
ggml_backend_cuda_context & ctx,
|
| 617 |
-
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
| 618 |
-
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
| 619 |
-
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
| 620 |
-
GGML_UNUSED(ctx);
|
| 621 |
-
const int64_t ne00 = src0->ne[0];
|
| 622 |
-
const int64_t row_diff = row_high - row_low;
|
| 623 |
-
|
| 624 |
-
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
| 625 |
-
|
| 626 |
-
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
| 627 |
-
#ifdef GGML_CUDA_F16
|
| 628 |
-
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
|
| 629 |
-
half * src1_dfloat = nullptr; // dfloat == half
|
| 630 |
-
|
| 631 |
-
bool src1_convert_f16 =
|
| 632 |
-
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
| 633 |
-
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
| 634 |
-
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
| 635 |
-
|
| 636 |
-
if (src1_convert_f16) {
|
| 637 |
-
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
| 638 |
-
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
| 639 |
-
GGML_ASSERT(to_fp16_cuda != nullptr);
|
| 640 |
-
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
|
| 641 |
-
}
|
| 642 |
-
#else
|
| 643 |
-
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
| 644 |
-
#endif // GGML_CUDA_F16
|
| 645 |
-
|
| 646 |
-
switch (src0->type) {
|
| 647 |
-
case GGML_TYPE_Q4_0:
|
| 648 |
-
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
| 649 |
-
break;
|
| 650 |
-
case GGML_TYPE_Q4_1:
|
| 651 |
-
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
| 652 |
-
break;
|
| 653 |
-
case GGML_TYPE_Q5_0:
|
| 654 |
-
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
| 655 |
-
break;
|
| 656 |
-
case GGML_TYPE_Q5_1:
|
| 657 |
-
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
| 658 |
-
break;
|
| 659 |
-
case GGML_TYPE_Q8_0:
|
| 660 |
-
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
| 661 |
-
break;
|
| 662 |
-
case GGML_TYPE_Q2_K:
|
| 663 |
-
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
| 664 |
-
break;
|
| 665 |
-
case GGML_TYPE_Q3_K:
|
| 666 |
-
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
| 667 |
-
break;
|
| 668 |
-
case GGML_TYPE_Q4_K:
|
| 669 |
-
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
| 670 |
-
break;
|
| 671 |
-
case GGML_TYPE_Q5_K:
|
| 672 |
-
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
| 673 |
-
break;
|
| 674 |
-
case GGML_TYPE_Q6_K:
|
| 675 |
-
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
| 676 |
-
break;
|
| 677 |
-
case GGML_TYPE_F16:
|
| 678 |
-
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
| 679 |
-
break;
|
| 680 |
-
default:
|
| 681 |
-
GGML_ABORT("fatal error");
|
| 682 |
-
break;
|
| 683 |
-
}
|
| 684 |
-
|
| 685 |
-
GGML_UNUSED(src1);
|
| 686 |
-
GGML_UNUSED(dst);
|
| 687 |
-
GGML_UNUSED(src1_ddq_i);
|
| 688 |
-
GGML_UNUSED(src1_ncols);
|
| 689 |
-
GGML_UNUSED(src1_padded_row_size);
|
| 690 |
-
}
|
| 691 |
-
|
| 692 |
-
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type) {
|
| 693 |
-
return src0_type == GGML_TYPE_Q4_0 || src0_type == GGML_TYPE_Q4_1 ||
|
| 694 |
-
src0_type == GGML_TYPE_Q5_0 || src0_type == GGML_TYPE_Q5_1 ||
|
| 695 |
-
src0_type == GGML_TYPE_Q8_0 || src0_type == GGML_TYPE_Q2_K ||
|
| 696 |
-
src0_type == GGML_TYPE_Q3_K || src0_type == GGML_TYPE_Q4_K ||
|
| 697 |
-
src0_type == GGML_TYPE_Q5_K || src0_type == GGML_TYPE_Q6_K ||
|
| 698 |
-
src0_type == GGML_TYPE_F16;
|
| 699 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggml/src/ggml-cuda/dmmv.cuh
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
#include "common.cuh"
|
| 2 |
-
|
| 3 |
-
// dmmv = dequantize_mul_mat_vec
|
| 4 |
-
|
| 5 |
-
// TODO: remove this?
|
| 6 |
-
#ifndef GGML_CUDA_DMMV_X
|
| 7 |
-
#define GGML_CUDA_DMMV_X 32
|
| 8 |
-
#endif
|
| 9 |
-
|
| 10 |
-
#ifndef GGML_CUDA_MMV_Y
|
| 11 |
-
#define GGML_CUDA_MMV_Y 1
|
| 12 |
-
#endif
|
| 13 |
-
|
| 14 |
-
void ggml_cuda_op_dequantize_mul_mat_vec(
|
| 15 |
-
ggml_backend_cuda_context & ctx,
|
| 16 |
-
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
| 17 |
-
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
| 18 |
-
const int64_t src1_padded_row_size, cudaStream_t stream);
|
| 19 |
-
|
| 20 |
-
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|