goldwaving commited on
Commit
3198674
·
unverified ·
1 Parent(s): dfabe35

Remove unnecessary memory reallocation in fft (#2080)

Browse files

fft_out needs to be twice the frame_size, not the frame_step. It is resized in fft() anyway, but this change prevents an unnecessary reallocation.

n_fft must match the mel filter size, so it is best not to calculate it from the framesize.

We only need to get the magnitudes for half the spectrum since the other half is a mirror and not used in the mel filter loop later.

Files changed (1) hide show
  1. whisper.cpp +6 -4
whisper.cpp CHANGED
@@ -2900,11 +2900,13 @@ static void log_mel_spectrogram_worker_thread(int ith, const std::vector<float>
2900
  int n_samples, int frame_size, int frame_step, int n_threads,
2901
  const whisper_filters & filters, whisper_mel & mel) {
2902
  std::vector<float> fft_in(frame_size, 0.0);
2903
- std::vector<float> fft_out(2 * frame_step);
2904
- // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
2905
- int n_fft = 1 + (frame_size / 2);
2906
  int i = ith;
2907
 
 
 
 
2908
  // calculate FFT only when fft_in are not all zero
2909
  for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) {
2910
  const int offset = i * frame_step;
@@ -2923,7 +2925,7 @@ static void log_mel_spectrogram_worker_thread(int ith, const std::vector<float>
2923
 
2924
  // Calculate modulus^2 of complex numbers
2925
  // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
2926
- for (int j = 0; j < frame_size; j++) {
2927
  fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
2928
  }
2929
 
 
2900
  int n_samples, int frame_size, int frame_step, int n_threads,
2901
  const whisper_filters & filters, whisper_mel & mel) {
2902
  std::vector<float> fft_in(frame_size, 0.0);
2903
+ std::vector<float> fft_out(2 * frame_size);
2904
+ int n_fft = filters.n_fft;
 
2905
  int i = ith;
2906
 
2907
+ // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
2908
+ assert( n_fft == 1 + (frame_size / 2) );
2909
+
2910
  // calculate FFT only when fft_in are not all zero
2911
  for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) {
2912
  const int offset = i * frame_step;
 
2925
 
2926
  // Calculate modulus^2 of complex numbers
2927
  // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
2928
+ for (int j = 0; j < n_fft; j++) {
2929
  fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
2930
  }
2931