Spaces:
Running
Running
AsukaMinato
commited on
minor : improve C++ and Python style (#768)
Browse files* use some STL functions
* use self.field than setattr, use pathlib.Path
* recover some format
* const some iter
* Keep the original
* 2 space
- models/convert-h5-to-ggml.py +17 -21
- models/convert-pt-to-ggml.py +20 -21
- models/convert-whisper-to-coreml.py +22 -25
- whisper.cpp +44 -41
models/convert-h5-to-ggml.py
CHANGED
|
@@ -23,6 +23,7 @@ import json
|
|
| 23 |
import code
|
| 24 |
import torch
|
| 25 |
import numpy as np
|
|
|
|
| 26 |
|
| 27 |
from transformers import WhisperForConditionalGeneration
|
| 28 |
|
|
@@ -75,16 +76,13 @@ if len(sys.argv) < 4:
|
|
| 75 |
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
|
| 76 |
sys.exit(1)
|
| 77 |
|
| 78 |
-
dir_model = sys.argv[1]
|
| 79 |
-
dir_whisper = sys.argv[2]
|
| 80 |
-
dir_out = sys.argv[3]
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
encoder_added = json.load(f)
|
| 86 |
-
with open(dir_model + "/config.json", "r", encoding="utf8") as f:
|
| 87 |
-
hparams = json.load(f)
|
| 88 |
|
| 89 |
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
| 90 |
|
|
@@ -96,16 +94,15 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
|
|
| 96 |
|
| 97 |
dir_tokenizer = dir_model
|
| 98 |
|
| 99 |
-
fname_out = dir_out
|
| 100 |
|
| 101 |
-
|
| 102 |
-
tokens = json.load(f)
|
| 103 |
|
| 104 |
# use 16-bit or 32-bit floats
|
| 105 |
use_f16 = True
|
| 106 |
if len(sys.argv) > 4:
|
| 107 |
use_f16 = False
|
| 108 |
-
fname_out = dir_out
|
| 109 |
|
| 110 |
fout = open(fname_out, "wb")
|
| 111 |
|
|
@@ -171,10 +168,9 @@ for name in list_vars.keys():
|
|
| 171 |
data = data.astype(np.float16)
|
| 172 |
|
| 173 |
# reshape conv bias from [n] to [n, 1]
|
| 174 |
-
if name
|
| 175 |
-
name == "encoder.conv2.bias":
|
| 176 |
data = data.reshape(data.shape[0], 1)
|
| 177 |
-
print(" Reshaped variable: "
|
| 178 |
|
| 179 |
n_dims = len(data.shape)
|
| 180 |
print(name, n_dims, data.shape)
|
|
@@ -182,7 +178,7 @@ for name in list_vars.keys():
|
|
| 182 |
# looks like the whisper models are in f16 by default
|
| 183 |
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
| 184 |
# ftype == 0 -> float32, ftype == 1 -> float16
|
| 185 |
-
ftype = 1
|
| 186 |
if use_f16:
|
| 187 |
if n_dims < 2 or \
|
| 188 |
name == "encoder.conv1.bias" or \
|
|
@@ -197,16 +193,16 @@ for name in list_vars.keys():
|
|
| 197 |
ftype = 0
|
| 198 |
|
| 199 |
# header
|
| 200 |
-
|
| 201 |
-
fout.write(struct.pack("iii", n_dims, len(
|
| 202 |
for i in range(n_dims):
|
| 203 |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
| 204 |
-
fout.write(
|
| 205 |
|
| 206 |
# data
|
| 207 |
data.tofile(fout)
|
| 208 |
|
| 209 |
fout.close()
|
| 210 |
|
| 211 |
-
print("Done. Output file: "
|
| 212 |
print("")
|
|
|
|
| 23 |
import code
|
| 24 |
import torch
|
| 25 |
import numpy as np
|
| 26 |
+
from pathlib import Path
|
| 27 |
|
| 28 |
from transformers import WhisperForConditionalGeneration
|
| 29 |
|
|
|
|
| 76 |
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
|
| 77 |
sys.exit(1)
|
| 78 |
|
| 79 |
+
dir_model = Path(sys.argv[1])
|
| 80 |
+
dir_whisper = Path(sys.argv[2])
|
| 81 |
+
dir_out = Path(sys.argv[3])
|
| 82 |
|
| 83 |
+
encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8"))
|
| 84 |
+
encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8"))
|
| 85 |
+
hparams = json.load((dir_model / "config.json").open("r", encoding="utf8") )
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
|
| 88 |
|
|
|
|
| 94 |
|
| 95 |
dir_tokenizer = dir_model
|
| 96 |
|
| 97 |
+
fname_out = dir_out / "ggml-model.bin"
|
| 98 |
|
| 99 |
+
tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8"))
|
|
|
|
| 100 |
|
| 101 |
# use 16-bit or 32-bit floats
|
| 102 |
use_f16 = True
|
| 103 |
if len(sys.argv) > 4:
|
| 104 |
use_f16 = False
|
| 105 |
+
fname_out = dir_out / "ggml-model-f32.bin"
|
| 106 |
|
| 107 |
fout = open(fname_out, "wb")
|
| 108 |
|
|
|
|
| 168 |
data = data.astype(np.float16)
|
| 169 |
|
| 170 |
# reshape conv bias from [n] to [n, 1]
|
| 171 |
+
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
|
|
|
|
| 172 |
data = data.reshape(data.shape[0], 1)
|
| 173 |
+
print(" Reshaped variable: " , name , " to shape: ", data.shape)
|
| 174 |
|
| 175 |
n_dims = len(data.shape)
|
| 176 |
print(name, n_dims, data.shape)
|
|
|
|
| 178 |
# looks like the whisper models are in f16 by default
|
| 179 |
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
| 180 |
# ftype == 0 -> float32, ftype == 1 -> float16
|
| 181 |
+
ftype = 1
|
| 182 |
if use_f16:
|
| 183 |
if n_dims < 2 or \
|
| 184 |
name == "encoder.conv1.bias" or \
|
|
|
|
| 193 |
ftype = 0
|
| 194 |
|
| 195 |
# header
|
| 196 |
+
str_ = name.encode('utf-8')
|
| 197 |
+
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
|
| 198 |
for i in range(n_dims):
|
| 199 |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
| 200 |
+
fout.write(str_)
|
| 201 |
|
| 202 |
# data
|
| 203 |
data.tofile(fout)
|
| 204 |
|
| 205 |
fout.close()
|
| 206 |
|
| 207 |
+
print("Done. Output file: " , fname_out)
|
| 208 |
print("")
|
models/convert-pt-to-ggml.py
CHANGED
|
@@ -40,7 +40,7 @@ import code
|
|
| 40 |
import torch
|
| 41 |
import numpy as np
|
| 42 |
import base64
|
| 43 |
-
|
| 44 |
#from transformers import GPTJForCausalLM
|
| 45 |
#from transformers import GPT2TokenizerFast
|
| 46 |
|
|
@@ -194,17 +194,17 @@ if len(sys.argv) < 4:
|
|
| 194 |
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
|
| 195 |
sys.exit(1)
|
| 196 |
|
| 197 |
-
fname_inp = sys.argv[1]
|
| 198 |
-
dir_whisper = sys.argv[2]
|
| 199 |
-
dir_out = sys.argv[3]
|
| 200 |
|
| 201 |
# try to load PyTorch binary data
|
| 202 |
try:
|
| 203 |
model_bytes = open(fname_inp, "rb").read()
|
| 204 |
with io.BytesIO(model_bytes) as fp:
|
| 205 |
checkpoint = torch.load(fp, map_location="cpu")
|
| 206 |
-
except:
|
| 207 |
-
print("Error: failed to load PyTorch model file:
|
| 208 |
sys.exit(1)
|
| 209 |
|
| 210 |
hparams = checkpoint["dims"]
|
|
@@ -218,17 +218,17 @@ list_vars = checkpoint["model_state_dict"]
|
|
| 218 |
|
| 219 |
# load mel filters
|
| 220 |
n_mels = hparams["n_mels"]
|
| 221 |
-
with np.load(
|
| 222 |
filters = torch.from_numpy(f[f"mel_{n_mels}"])
|
| 223 |
#print (filters)
|
| 224 |
|
| 225 |
#code.interact(local=locals())
|
| 226 |
|
| 227 |
multilingual = hparams["n_vocab"] == 51865
|
| 228 |
-
tokenizer =
|
| 229 |
|
| 230 |
# output in the same directory as the model
|
| 231 |
-
fname_out = dir_out
|
| 232 |
|
| 233 |
with open(tokenizer, "rb") as f:
|
| 234 |
contents = f.read()
|
|
@@ -238,9 +238,9 @@ with open(tokenizer, "rb") as f:
|
|
| 238 |
use_f16 = True
|
| 239 |
if len(sys.argv) > 4:
|
| 240 |
use_f16 = False
|
| 241 |
-
fname_out = dir_out
|
| 242 |
|
| 243 |
-
fout = open(
|
| 244 |
|
| 245 |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
| 246 |
fout.write(struct.pack("i", hparams["n_vocab"]))
|
|
@@ -273,20 +273,19 @@ for key in tokens:
|
|
| 273 |
|
| 274 |
for name in list_vars.keys():
|
| 275 |
data = list_vars[name].squeeze().numpy()
|
| 276 |
-
print("Processing variable: "
|
| 277 |
|
| 278 |
# reshape conv bias from [n] to [n, 1]
|
| 279 |
-
if name
|
| 280 |
-
name == "encoder.conv2.bias":
|
| 281 |
data = data.reshape(data.shape[0], 1)
|
| 282 |
-
print(" Reshaped variable:
|
| 283 |
|
| 284 |
-
n_dims = len(data.shape)
|
| 285 |
|
| 286 |
# looks like the whisper models are in f16 by default
|
| 287 |
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
| 288 |
# ftype == 0 -> float32, ftype == 1 -> float16
|
| 289 |
-
ftype = 1
|
| 290 |
if use_f16:
|
| 291 |
if n_dims < 2 or \
|
| 292 |
name == "encoder.conv1.bias" or \
|
|
@@ -307,16 +306,16 @@ for name in list_vars.keys():
|
|
| 307 |
# data = data.transpose()
|
| 308 |
|
| 309 |
# header
|
| 310 |
-
|
| 311 |
-
fout.write(struct.pack("iii", n_dims, len(
|
| 312 |
for i in range(n_dims):
|
| 313 |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
| 314 |
-
fout.write(
|
| 315 |
|
| 316 |
# data
|
| 317 |
data.tofile(fout)
|
| 318 |
|
| 319 |
fout.close()
|
| 320 |
|
| 321 |
-
print("Done. Output file: "
|
| 322 |
print("")
|
|
|
|
| 40 |
import torch
|
| 41 |
import numpy as np
|
| 42 |
import base64
|
| 43 |
+
from pathlib import Path
|
| 44 |
#from transformers import GPTJForCausalLM
|
| 45 |
#from transformers import GPT2TokenizerFast
|
| 46 |
|
|
|
|
| 194 |
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
|
| 195 |
sys.exit(1)
|
| 196 |
|
| 197 |
+
fname_inp = Path(sys.argv[1])
|
| 198 |
+
dir_whisper = Path(sys.argv[2])
|
| 199 |
+
dir_out = Path(sys.argv[3])
|
| 200 |
|
| 201 |
# try to load PyTorch binary data
|
| 202 |
try:
|
| 203 |
model_bytes = open(fname_inp, "rb").read()
|
| 204 |
with io.BytesIO(model_bytes) as fp:
|
| 205 |
checkpoint = torch.load(fp, map_location="cpu")
|
| 206 |
+
except Exception:
|
| 207 |
+
print("Error: failed to load PyTorch model file:" , fname_inp)
|
| 208 |
sys.exit(1)
|
| 209 |
|
| 210 |
hparams = checkpoint["dims"]
|
|
|
|
| 218 |
|
| 219 |
# load mel filters
|
| 220 |
n_mels = hparams["n_mels"]
|
| 221 |
+
with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f:
|
| 222 |
filters = torch.from_numpy(f[f"mel_{n_mels}"])
|
| 223 |
#print (filters)
|
| 224 |
|
| 225 |
#code.interact(local=locals())
|
| 226 |
|
| 227 |
multilingual = hparams["n_vocab"] == 51865
|
| 228 |
+
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
|
| 229 |
|
| 230 |
# output in the same directory as the model
|
| 231 |
+
fname_out = dir_out / "ggml-model.bin"
|
| 232 |
|
| 233 |
with open(tokenizer, "rb") as f:
|
| 234 |
contents = f.read()
|
|
|
|
| 238 |
use_f16 = True
|
| 239 |
if len(sys.argv) > 4:
|
| 240 |
use_f16 = False
|
| 241 |
+
fname_out = dir_out / "ggml-model-f32.bin"
|
| 242 |
|
| 243 |
+
fout = fname_out.open("wb")
|
| 244 |
|
| 245 |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
| 246 |
fout.write(struct.pack("i", hparams["n_vocab"]))
|
|
|
|
| 273 |
|
| 274 |
for name in list_vars.keys():
|
| 275 |
data = list_vars[name].squeeze().numpy()
|
| 276 |
+
print("Processing variable: " , name , " with shape: ", data.shape)
|
| 277 |
|
| 278 |
# reshape conv bias from [n] to [n, 1]
|
| 279 |
+
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
|
|
|
|
| 280 |
data = data.reshape(data.shape[0], 1)
|
| 281 |
+
print(f" Reshaped variable: {name} to shape: ", data.shape)
|
| 282 |
|
| 283 |
+
n_dims = len(data.shape)
|
| 284 |
|
| 285 |
# looks like the whisper models are in f16 by default
|
| 286 |
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
| 287 |
# ftype == 0 -> float32, ftype == 1 -> float16
|
| 288 |
+
ftype = 1
|
| 289 |
if use_f16:
|
| 290 |
if n_dims < 2 or \
|
| 291 |
name == "encoder.conv1.bias" or \
|
|
|
|
| 306 |
# data = data.transpose()
|
| 307 |
|
| 308 |
# header
|
| 309 |
+
str_ = name.encode('utf-8')
|
| 310 |
+
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
|
| 311 |
for i in range(n_dims):
|
| 312 |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
| 313 |
+
fout.write(str_)
|
| 314 |
|
| 315 |
# data
|
| 316 |
data.tofile(fout)
|
| 317 |
|
| 318 |
fout.close()
|
| 319 |
|
| 320 |
+
print("Done. Output file: " , fname_out)
|
| 321 |
print("")
|
models/convert-whisper-to-coreml.py
CHANGED
|
@@ -20,7 +20,7 @@ def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
|
|
| 20 |
"""
|
| 21 |
for k in state_dict:
|
| 22 |
is_attention = all(substr in k for substr in ['attn', '.weight'])
|
| 23 |
-
is_mlp = any(
|
| 24 |
|
| 25 |
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
|
| 26 |
state_dict[k] = state_dict[k][:, :, None, None]
|
|
@@ -42,11 +42,10 @@ class LayerNormANE(LayerNormANEBase):
|
|
| 42 |
class MultiHeadAttentionANE(MultiHeadAttention):
|
| 43 |
def __init__(self, n_state: int, n_head: int):
|
| 44 |
super().__init__(n_state, n_head)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
setattr(self, 'out', nn.Conv2d(n_state, n_state, kernel_size=1))
|
| 50 |
|
| 51 |
def forward(self,
|
| 52 |
x: Tensor,
|
|
@@ -104,30 +103,28 @@ class MultiHeadAttentionANE(MultiHeadAttention):
|
|
| 104 |
class ResidualAttentionBlockANE(ResidualAttentionBlock):
|
| 105 |
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
| 106 |
super().__init__(n_state, n_head, cross_attention)
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
setattr(self, 'cross_attn', MultiHeadAttentionANE(n_state, n_head) if cross_attention else None)
|
| 112 |
-
setattr(self, 'cross_attn_ln', LayerNormANE(n_state) if cross_attention else None)
|
| 113 |
|
| 114 |
n_mlp = n_state * 4
|
| 115 |
-
|
| 116 |
nn.Conv2d(n_state, n_mlp, kernel_size=1),
|
| 117 |
nn.GELU(),
|
| 118 |
nn.Conv2d(n_mlp, n_state, kernel_size=1)
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
|
| 122 |
|
| 123 |
class AudioEncoderANE(AudioEncoder):
|
| 124 |
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
| 125 |
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
|
| 126 |
|
| 127 |
-
|
| 128 |
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
|
| 132 |
def forward(self, x: Tensor):
|
| 133 |
"""
|
|
@@ -168,10 +165,10 @@ class TextDecoderANE(TextDecoder):
|
|
| 168 |
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
| 169 |
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
|
| 170 |
|
| 171 |
-
|
| 172 |
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
|
| 176 |
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
| 177 |
"""
|
|
@@ -213,20 +210,20 @@ class WhisperANE(Whisper):
|
|
| 213 |
def __init__(self, dims: ModelDimensions):
|
| 214 |
super().__init__(dims)
|
| 215 |
|
| 216 |
-
|
| 217 |
self.dims.n_mels,
|
| 218 |
self.dims.n_audio_ctx,
|
| 219 |
self.dims.n_audio_state,
|
| 220 |
self.dims.n_audio_head,
|
| 221 |
self.dims.n_audio_layer,
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
self.dims.n_vocab,
|
| 225 |
self.dims.n_text_ctx,
|
| 226 |
self.dims.n_text_state,
|
| 227 |
self.dims.n_text_head,
|
| 228 |
self.dims.n_text_layer,
|
| 229 |
-
)
|
| 230 |
|
| 231 |
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)
|
| 232 |
|
|
|
|
| 20 |
"""
|
| 21 |
for k in state_dict:
|
| 22 |
is_attention = all(substr in k for substr in ['attn', '.weight'])
|
| 23 |
+
is_mlp = any(k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight'])
|
| 24 |
|
| 25 |
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
|
| 26 |
state_dict[k] = state_dict[k][:, :, None, None]
|
|
|
|
| 42 |
class MultiHeadAttentionANE(MultiHeadAttention):
|
| 43 |
def __init__(self, n_state: int, n_head: int):
|
| 44 |
super().__init__(n_state, n_head)
|
| 45 |
+
self.query = nn.Conv2d(n_state, n_state, kernel_size=1)
|
| 46 |
+
self.key = nn.Conv2d(n_state, n_state, kernel_size=1, bias=False)
|
| 47 |
+
self.value = nn.Conv2d(n_state, n_state, kernel_size=1)
|
| 48 |
+
self.out = nn.Conv2d(n_state, n_state, kernel_size=1)
|
|
|
|
| 49 |
|
| 50 |
def forward(self,
|
| 51 |
x: Tensor,
|
|
|
|
| 103 |
class ResidualAttentionBlockANE(ResidualAttentionBlock):
|
| 104 |
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
| 105 |
super().__init__(n_state, n_head, cross_attention)
|
| 106 |
+
self.attn = MultiHeadAttentionANE(n_state, n_head)
|
| 107 |
+
self.attn_ln = LayerNormANE(n_state)
|
| 108 |
+
self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None
|
| 109 |
+
self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None
|
|
|
|
|
|
|
| 110 |
|
| 111 |
n_mlp = n_state * 4
|
| 112 |
+
self.mlp = nn.Sequential(
|
| 113 |
nn.Conv2d(n_state, n_mlp, kernel_size=1),
|
| 114 |
nn.GELU(),
|
| 115 |
nn.Conv2d(n_mlp, n_state, kernel_size=1)
|
| 116 |
+
)
|
| 117 |
+
self.mlp_ln = LayerNormANE(n_state)
|
| 118 |
|
| 119 |
|
| 120 |
class AudioEncoderANE(AudioEncoder):
|
| 121 |
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
| 122 |
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
|
| 123 |
|
| 124 |
+
self.blocks = nn.ModuleList(
|
| 125 |
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
|
| 126 |
+
)
|
| 127 |
+
self.ln_post = LayerNormANE(n_state)
|
| 128 |
|
| 129 |
def forward(self, x: Tensor):
|
| 130 |
"""
|
|
|
|
| 165 |
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
| 166 |
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
|
| 167 |
|
| 168 |
+
self.blocks= nn.ModuleList(
|
| 169 |
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
| 170 |
+
)
|
| 171 |
+
self.ln= LayerNormANE(n_state)
|
| 172 |
|
| 173 |
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
| 174 |
"""
|
|
|
|
| 210 |
def __init__(self, dims: ModelDimensions):
|
| 211 |
super().__init__(dims)
|
| 212 |
|
| 213 |
+
self.encoder = AudioEncoderANE(
|
| 214 |
self.dims.n_mels,
|
| 215 |
self.dims.n_audio_ctx,
|
| 216 |
self.dims.n_audio_state,
|
| 217 |
self.dims.n_audio_head,
|
| 218 |
self.dims.n_audio_layer,
|
| 219 |
+
)
|
| 220 |
+
self.decoder = TextDecoderANE(
|
| 221 |
self.dims.n_vocab,
|
| 222 |
self.dims.n_text_ctx,
|
| 223 |
self.dims.n_text_state,
|
| 224 |
self.dims.n_text_head,
|
| 225 |
self.dims.n_text_layer,
|
| 226 |
+
)
|
| 227 |
|
| 228 |
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)
|
| 229 |
|
whisper.cpp
CHANGED
|
@@ -2356,11 +2356,7 @@ static void log_mel_spectrogram_worker_thread(int ith, const std::vector<float>
|
|
| 2356 |
sum += fft_out[k] * filters.data[j * n_fft + k];
|
| 2357 |
}
|
| 2358 |
|
| 2359 |
-
|
| 2360 |
-
sum = 1e-10;
|
| 2361 |
-
}
|
| 2362 |
-
|
| 2363 |
-
sum = log10(sum);
|
| 2364 |
|
| 2365 |
mel.data[j * mel.n_len + i] = sum;
|
| 2366 |
}
|
|
@@ -2602,7 +2598,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
|
| 2602 |
}
|
| 2603 |
|
| 2604 |
struct whisper_context * whisper_init_from_file_no_state(const char * path_model) {
|
| 2605 |
-
whisper_model_loader loader = {};
|
| 2606 |
|
| 2607 |
fprintf(stderr, "%s: loading model from '%s'\n", __func__, path_model);
|
| 2608 |
|
|
@@ -2612,22 +2607,27 @@ struct whisper_context * whisper_init_from_file_no_state(const char * path_model
|
|
| 2612 |
return nullptr;
|
| 2613 |
}
|
| 2614 |
|
| 2615 |
-
loader
|
| 2616 |
-
|
| 2617 |
-
|
| 2618 |
-
|
| 2619 |
-
|
| 2620 |
-
|
| 2621 |
-
|
| 2622 |
-
|
| 2623 |
-
|
| 2624 |
-
|
| 2625 |
-
|
| 2626 |
-
|
| 2627 |
-
|
| 2628 |
-
|
| 2629 |
-
|
| 2630 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2631 |
};
|
| 2632 |
|
| 2633 |
auto ctx = whisper_init_no_state(&loader);
|
|
@@ -2647,30 +2647,34 @@ struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t
|
|
| 2647 |
};
|
| 2648 |
|
| 2649 |
buf_context ctx = { reinterpret_cast<uint8_t*>(buffer), buffer_size, 0 };
|
| 2650 |
-
whisper_model_loader loader = {};
|
| 2651 |
|
| 2652 |
fprintf(stderr, "%s: loading model from buffer\n", __func__);
|
| 2653 |
|
| 2654 |
-
loader
|
|
|
|
| 2655 |
|
| 2656 |
-
|
| 2657 |
-
|
|
|
|
| 2658 |
|
| 2659 |
-
|
|
|
|
|
|
|
| 2660 |
|
| 2661 |
-
|
| 2662 |
-
|
| 2663 |
|
| 2664 |
-
|
| 2665 |
-
|
| 2666 |
|
| 2667 |
-
|
| 2668 |
-
|
|
|
|
| 2669 |
|
| 2670 |
-
|
| 2671 |
-
|
| 2672 |
|
| 2673 |
-
|
| 2674 |
|
| 2675 |
return whisper_init_no_state(&loader);
|
| 2676 |
}
|
|
@@ -2909,7 +2913,6 @@ int whisper_lang_id(const char * lang) {
|
|
| 2909 |
fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang);
|
| 2910 |
return -1;
|
| 2911 |
}
|
| 2912 |
-
|
| 2913 |
return g_lang.at(lang).first;
|
| 2914 |
}
|
| 2915 |
|
|
@@ -3303,15 +3306,15 @@ static void whisper_exp_compute_token_level_timestamps(
|
|
| 3303 |
|
| 3304 |
// trim from start (in place)
|
| 3305 |
static inline void ltrim(std::string &s) {
|
| 3306 |
-
s.erase(s.begin(), std::
|
| 3307 |
-
return
|
| 3308 |
}));
|
| 3309 |
}
|
| 3310 |
|
| 3311 |
// trim from end (in place)
|
| 3312 |
static inline void rtrim(std::string &s) {
|
| 3313 |
-
s.erase(std::
|
| 3314 |
-
return
|
| 3315 |
}).base(), s.end());
|
| 3316 |
}
|
| 3317 |
|
|
|
|
| 2356 |
sum += fft_out[k] * filters.data[j * n_fft + k];
|
| 2357 |
}
|
| 2358 |
|
| 2359 |
+
sum = log10(std::max(sum, 1e-10));
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2360 |
|
| 2361 |
mel.data[j * mel.n_len + i] = sum;
|
| 2362 |
}
|
|
|
|
| 2598 |
}
|
| 2599 |
|
| 2600 |
struct whisper_context * whisper_init_from_file_no_state(const char * path_model) {
|
|
|
|
| 2601 |
|
| 2602 |
fprintf(stderr, "%s: loading model from '%s'\n", __func__, path_model);
|
| 2603 |
|
|
|
|
| 2607 |
return nullptr;
|
| 2608 |
}
|
| 2609 |
|
| 2610 |
+
whisper_model_loader loader = {
|
| 2611 |
+
.context = &fin,
|
| 2612 |
+
|
| 2613 |
+
.read =
|
| 2614 |
+
[](void *ctx, void *output, size_t read_size) {
|
| 2615 |
+
std::ifstream *fin = (std::ifstream *)ctx;
|
| 2616 |
+
fin->read((char *)output, read_size);
|
| 2617 |
+
return read_size;
|
| 2618 |
+
},
|
| 2619 |
+
|
| 2620 |
+
.eof =
|
| 2621 |
+
[](void *ctx) {
|
| 2622 |
+
std::ifstream *fin = (std::ifstream *)ctx;
|
| 2623 |
+
return fin->eof();
|
| 2624 |
+
},
|
| 2625 |
+
|
| 2626 |
+
.close =
|
| 2627 |
+
[](void *ctx) {
|
| 2628 |
+
std::ifstream *fin = (std::ifstream *)ctx;
|
| 2629 |
+
fin->close();
|
| 2630 |
+
}
|
| 2631 |
};
|
| 2632 |
|
| 2633 |
auto ctx = whisper_init_no_state(&loader);
|
|
|
|
| 2647 |
};
|
| 2648 |
|
| 2649 |
buf_context ctx = { reinterpret_cast<uint8_t*>(buffer), buffer_size, 0 };
|
|
|
|
| 2650 |
|
| 2651 |
fprintf(stderr, "%s: loading model from buffer\n", __func__);
|
| 2652 |
|
| 2653 |
+
whisper_model_loader loader = {
|
| 2654 |
+
.context = &ctx,
|
| 2655 |
|
| 2656 |
+
.read =
|
| 2657 |
+
[](void *ctx, void *output, size_t read_size) {
|
| 2658 |
+
buf_context *buf = reinterpret_cast<buf_context *>(ctx);
|
| 2659 |
|
| 2660 |
+
size_t size_to_copy = buf->current_offset + read_size < buf->size
|
| 2661 |
+
? read_size
|
| 2662 |
+
: buf->size - buf->current_offset;
|
| 2663 |
|
| 2664 |
+
memcpy(output, buf->buffer + buf->current_offset, size_to_copy);
|
| 2665 |
+
buf->current_offset += size_to_copy;
|
| 2666 |
|
| 2667 |
+
return size_to_copy;
|
| 2668 |
+
},
|
| 2669 |
|
| 2670 |
+
.eof =
|
| 2671 |
+
[](void *ctx) {
|
| 2672 |
+
buf_context *buf = reinterpret_cast<buf_context *>(ctx);
|
| 2673 |
|
| 2674 |
+
return buf->current_offset >= buf->size;
|
| 2675 |
+
},
|
| 2676 |
|
| 2677 |
+
.close = [](void * /*ctx*/) {}};
|
| 2678 |
|
| 2679 |
return whisper_init_no_state(&loader);
|
| 2680 |
}
|
|
|
|
| 2913 |
fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang);
|
| 2914 |
return -1;
|
| 2915 |
}
|
|
|
|
| 2916 |
return g_lang.at(lang).first;
|
| 2917 |
}
|
| 2918 |
|
|
|
|
| 3306 |
|
| 3307 |
// trim from start (in place)
|
| 3308 |
static inline void ltrim(std::string &s) {
|
| 3309 |
+
s.erase(s.begin(), std::find_if_not(s.begin(), s.end(), [](unsigned char ch) {
|
| 3310 |
+
return std::isspace(ch);
|
| 3311 |
}));
|
| 3312 |
}
|
| 3313 |
|
| 3314 |
// trim from end (in place)
|
| 3315 |
static inline void rtrim(std::string &s) {
|
| 3316 |
+
s.erase(std::find_if_not(s.rbegin(), s.rend(), [](unsigned char ch) {
|
| 3317 |
+
return std::isspace(ch);
|
| 3318 |
}).base(), s.end());
|
| 3319 |
}
|
| 3320 |
|