Spaces:
Running
Running
Neil Chudleigh
commited on
extra: Add benchmark script implemented in Python (#1298)
Browse files* Create bench.py
* Various benchmark results
* Update benchmark script with hardware name, and file checks
* Remove old benchmark results
* Add git shorthash
* Round to 2 digits on calculated floats
* Fix the header reference when sorting results
* FIx order of models
* Parse file name
* Simplify filecheck
* Improve print run print statement
* Use simplified model name
* Update benchmark_results.csv
* Process single or lists of processors and threads
* Ignore benchmark results, dont check in
* Move bench.py to extra folder
* Readme section on how to use
* Move command to correct location
* Use separate list for models that exist
* Handle subprocess error in git short hash check
* Fix filtered models list initialization
- .gitignore +2 -0
- README.md +13 -0
- extra/bench.py +222 -0
.gitignore
CHANGED
|
@@ -46,3 +46,5 @@ models/*.mlpackage
|
|
| 46 |
bindings/java/.gradle/
|
| 47 |
bindings/java/.idea/
|
| 48 |
.idea/
|
|
|
|
|
|
|
|
|
| 46 |
bindings/java/.gradle/
|
| 47 |
bindings/java/.idea/
|
| 48 |
.idea/
|
| 49 |
+
|
| 50 |
+
benchmark_results.csv
|
README.md
CHANGED
|
@@ -709,6 +709,19 @@ took to execute it. The results are summarized in the following Github issue:
|
|
| 709 |
|
| 710 |
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
|
| 711 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
## ggml format
|
| 713 |
|
| 714 |
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
|
|
|
|
| 709 |
|
| 710 |
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
|
| 711 |
|
| 712 |
+
Additionally a script to run whisper.cpp with different models and audio files is provided [bench.py](bench.py).
|
| 713 |
+
|
| 714 |
+
You can run it with the following command, by default it will run against any standard model in the models folder.
|
| 715 |
+
|
| 716 |
+
```bash
|
| 717 |
+
python3 extra/bench.py -f samples/jfk.wav -t 2,4,8 -p 1,2
|
| 718 |
+
```
|
| 719 |
+
|
| 720 |
+
It is written in python with the intention of being easy to modify and extend for your benchmarking use case.
|
| 721 |
+
|
| 722 |
+
It outputs a csv file with the results of the benchmarking.
|
| 723 |
+
|
| 724 |
+
|
| 725 |
## ggml format
|
| 726 |
|
| 727 |
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
|
extra/bench.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import subprocess
|
| 3 |
+
import re
|
| 4 |
+
import csv
|
| 5 |
+
import wave
|
| 6 |
+
import contextlib
|
| 7 |
+
import argparse
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Custom action to handle comma-separated list
|
| 11 |
+
class ListAction(argparse.Action):
|
| 12 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
| 13 |
+
setattr(namespace, self.dest, [int(val) for val in values.split(",")])
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
parser = argparse.ArgumentParser(description="Benchmark the speech recognition model")
|
| 17 |
+
|
| 18 |
+
# Define the argument to accept a list
|
| 19 |
+
parser.add_argument(
|
| 20 |
+
"-t",
|
| 21 |
+
"--threads",
|
| 22 |
+
dest="threads",
|
| 23 |
+
action=ListAction,
|
| 24 |
+
default=[4],
|
| 25 |
+
help="List of thread counts to benchmark (comma-separated, default: 4)",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
parser.add_argument(
|
| 29 |
+
"-p",
|
| 30 |
+
"--processors",
|
| 31 |
+
dest="processors",
|
| 32 |
+
action=ListAction,
|
| 33 |
+
default=[1],
|
| 34 |
+
help="List of processor counts to benchmark (comma-separated, default: 1)",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
parser.add_argument(
|
| 39 |
+
"-f",
|
| 40 |
+
"--filename",
|
| 41 |
+
type=str,
|
| 42 |
+
default="./samples/jfk.wav",
|
| 43 |
+
help="Relative path of the file to transcribe (default: ./samples/jfk.wav)",
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Parse the command line arguments
|
| 47 |
+
args = parser.parse_args()
|
| 48 |
+
|
| 49 |
+
sample_file = args.filename
|
| 50 |
+
|
| 51 |
+
threads = args.threads
|
| 52 |
+
processors = args.processors
|
| 53 |
+
|
| 54 |
+
# Define the models, threads, and processor counts to benchmark
|
| 55 |
+
models = [
|
| 56 |
+
"ggml-tiny.en.bin",
|
| 57 |
+
"ggml-tiny.bin",
|
| 58 |
+
"ggml-base.en.bin",
|
| 59 |
+
"ggml-base.bin",
|
| 60 |
+
"ggml-small.en.bin",
|
| 61 |
+
"ggml-small.bin",
|
| 62 |
+
"ggml-medium.en.bin",
|
| 63 |
+
"ggml-medium.bin",
|
| 64 |
+
"ggml-large.bin",
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
metal_device = ""
|
| 69 |
+
|
| 70 |
+
# Initialize a dictionary to hold the results
|
| 71 |
+
results = {}
|
| 72 |
+
|
| 73 |
+
gitHashHeader = "Commit"
|
| 74 |
+
modelHeader = "Model"
|
| 75 |
+
hardwareHeader = "Hardware"
|
| 76 |
+
recordingLengthHeader = "Recording Length (seconds)"
|
| 77 |
+
threadHeader = "Thread"
|
| 78 |
+
processorCountHeader = "Processor Count"
|
| 79 |
+
loadTimeHeader = "Load Time (ms)"
|
| 80 |
+
sampleTimeHeader = "Sample Time (ms)"
|
| 81 |
+
encodeTimeHeader = "Encode Time (ms)"
|
| 82 |
+
decodeTimeHeader = "Decode Time (ms)"
|
| 83 |
+
sampleTimePerRunHeader = "Sample Time per Run (ms)"
|
| 84 |
+
encodeTimePerRunHeader = "Encode Time per Run (ms)"
|
| 85 |
+
decodeTimePerRunHeader = "Decode Time per Run (ms)"
|
| 86 |
+
totalTimeHeader = "Total Time (ms)"
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def check_file_exists(file: str) -> bool:
|
| 90 |
+
return os.path.isfile(file)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_git_short_hash() -> str:
|
| 94 |
+
try:
|
| 95 |
+
return (
|
| 96 |
+
subprocess.check_output(["git", "rev-parse", "--short", "HEAD"])
|
| 97 |
+
.decode()
|
| 98 |
+
.strip()
|
| 99 |
+
)
|
| 100 |
+
except subprocess.CalledProcessError as e:
|
| 101 |
+
return ""
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def wav_file_length(file: str = sample_file) -> float:
|
| 105 |
+
with contextlib.closing(wave.open(file, "r")) as f:
|
| 106 |
+
frames = f.getnframes()
|
| 107 |
+
rate = f.getframerate()
|
| 108 |
+
duration = frames / float(rate)
|
| 109 |
+
return duration
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def extract_metrics(output: str, label: str) -> tuple[float, float]:
|
| 113 |
+
match = re.search(rf"{label} \s*=\s*(\d+\.\d+)\s*ms\s*/\s*(\d+)\s*runs", output)
|
| 114 |
+
time = float(match.group(1)) if match else None
|
| 115 |
+
runs = float(match.group(2)) if match else None
|
| 116 |
+
return time, runs
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def extract_device(output: str) -> str:
|
| 120 |
+
match = re.search(r"picking default device: (.*)", output)
|
| 121 |
+
device = match.group(1) if match else "Not found"
|
| 122 |
+
return device
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# Check if the sample file exists
|
| 126 |
+
if not check_file_exists(sample_file):
|
| 127 |
+
raise FileNotFoundError(f"Sample file {sample_file} not found")
|
| 128 |
+
|
| 129 |
+
recording_length = wav_file_length()
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# Check that all models exist
|
| 133 |
+
# Filter out models from list that are not downloaded
|
| 134 |
+
filtered_models = []
|
| 135 |
+
for model in models:
|
| 136 |
+
if check_file_exists(f"models/{model}"):
|
| 137 |
+
filtered_models.append(model)
|
| 138 |
+
else:
|
| 139 |
+
print(f"Model {model} not found, removing from list")
|
| 140 |
+
|
| 141 |
+
models = filtered_models
|
| 142 |
+
|
| 143 |
+
# Loop over each combination of parameters
|
| 144 |
+
for model in filtered_models:
|
| 145 |
+
for thread in threads:
|
| 146 |
+
for processor_count in processors:
|
| 147 |
+
# Construct the command to run
|
| 148 |
+
cmd = f"./main -m models/{model} -t {thread} -p {processor_count} -f {sample_file}"
|
| 149 |
+
# Run the command and get the output
|
| 150 |
+
process = subprocess.Popen(
|
| 151 |
+
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
output = ""
|
| 155 |
+
while process.poll() is None:
|
| 156 |
+
output += process.stdout.read().decode()
|
| 157 |
+
|
| 158 |
+
# Parse the output
|
| 159 |
+
load_time_match = re.search(r"load time\s*=\s*(\d+\.\d+)\s*ms", output)
|
| 160 |
+
load_time = float(load_time_match.group(1)) if load_time_match else None
|
| 161 |
+
|
| 162 |
+
metal_device = extract_device(output)
|
| 163 |
+
sample_time, sample_runs = extract_metrics(output, "sample time")
|
| 164 |
+
encode_time, encode_runs = extract_metrics(output, "encode time")
|
| 165 |
+
decode_time, decode_runs = extract_metrics(output, "decode time")
|
| 166 |
+
|
| 167 |
+
total_time_match = re.search(r"total time\s*=\s*(\d+\.\d+)\s*ms", output)
|
| 168 |
+
total_time = float(total_time_match.group(1)) if total_time_match else None
|
| 169 |
+
|
| 170 |
+
model_name = model.replace("ggml-", "").replace(".bin", "")
|
| 171 |
+
|
| 172 |
+
print(
|
| 173 |
+
f"Ran model={model_name} threads={thread} processor_count={processor_count}, took {total_time}ms"
|
| 174 |
+
)
|
| 175 |
+
# Store the times in the results dictionary
|
| 176 |
+
results[(model_name, thread, processor_count)] = {
|
| 177 |
+
loadTimeHeader: load_time,
|
| 178 |
+
sampleTimeHeader: sample_time,
|
| 179 |
+
encodeTimeHeader: encode_time,
|
| 180 |
+
decodeTimeHeader: decode_time,
|
| 181 |
+
sampleTimePerRunHeader: round(sample_time / sample_runs, 2),
|
| 182 |
+
encodeTimePerRunHeader: round(encode_time / encode_runs, 2),
|
| 183 |
+
decodeTimePerRunHeader: round(decode_time / decode_runs, 2),
|
| 184 |
+
totalTimeHeader: total_time,
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
# Write the results to a CSV file
|
| 188 |
+
with open("benchmark_results.csv", "w", newline="") as csvfile:
|
| 189 |
+
fieldnames = [
|
| 190 |
+
gitHashHeader,
|
| 191 |
+
modelHeader,
|
| 192 |
+
hardwareHeader,
|
| 193 |
+
recordingLengthHeader,
|
| 194 |
+
threadHeader,
|
| 195 |
+
processorCountHeader,
|
| 196 |
+
loadTimeHeader,
|
| 197 |
+
sampleTimeHeader,
|
| 198 |
+
encodeTimeHeader,
|
| 199 |
+
decodeTimeHeader,
|
| 200 |
+
sampleTimePerRunHeader,
|
| 201 |
+
encodeTimePerRunHeader,
|
| 202 |
+
decodeTimePerRunHeader,
|
| 203 |
+
totalTimeHeader,
|
| 204 |
+
]
|
| 205 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
| 206 |
+
|
| 207 |
+
writer.writeheader()
|
| 208 |
+
|
| 209 |
+
shortHash = get_git_short_hash()
|
| 210 |
+
# Sort the results by total time in ascending order
|
| 211 |
+
sorted_results = sorted(results.items(), key=lambda x: x[1].get(totalTimeHeader, 0))
|
| 212 |
+
for params, times in sorted_results:
|
| 213 |
+
row = {
|
| 214 |
+
gitHashHeader: shortHash,
|
| 215 |
+
modelHeader: params[0],
|
| 216 |
+
hardwareHeader: metal_device,
|
| 217 |
+
recordingLengthHeader: recording_length,
|
| 218 |
+
threadHeader: params[1],
|
| 219 |
+
processorCountHeader: params[2],
|
| 220 |
+
}
|
| 221 |
+
row.update(times)
|
| 222 |
+
writer.writerow(row)
|