stanimirovb commited on
Commit
c6894d3
·
unverified ·
1 Parent(s): 7ef0c95

whisper : add CUDA-specific computation mel spectrograms (#2206)

Browse files

* whisper : use polymorphic class to calculate mel spectrogram

* whisper : add cuda-specific mel spectrogram calculation

* whisper : conditionally compile cufftGetErrorString to avoid warnings

* build : add new files to makefile

* ruby : add new files to conf script

* build : fix typo in makefile

* whisper : suppress cub warning for deprecated C++ std in whisper-mel-cuda

CMakeLists.txt CHANGED
@@ -364,12 +364,12 @@ if (WHISPER_CUDA)
364
  if (WHISPER_STATIC)
365
  if (WIN32)
366
  # As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
367
- set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
368
  else ()
369
- set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
370
  endif()
371
  else()
372
- set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
373
  endif()
374
 
375
  set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver)
@@ -679,6 +679,10 @@ add_library(${TARGET}
679
  whisper.cpp
680
  )
681
 
 
 
 
 
682
  include_directories (
683
  .
684
  )
 
364
  if (WHISPER_STATIC)
365
  if (WIN32)
366
  # As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
367
+ set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt CUDA::cufft)
368
  else ()
369
+ set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static CUDA::cufft_static)
370
  endif()
371
  else()
372
+ set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt CUDA::cufft)
373
  endif()
374
 
375
  set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cuda_driver)
 
679
  whisper.cpp
680
  )
681
 
682
+ if (WHISPER_CUDA)
683
+ target_sources(${TARGET} PRIVATE whisper-mel-cuda.cu)
684
+ endif()
685
+
686
  include_directories (
687
  .
688
  )
Makefile CHANGED
@@ -286,8 +286,8 @@ ifdef WHISPER_CUDA
286
 
287
  CFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
288
  CXXFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
289
- LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
290
- WHISPER_OBJ += ggml-cuda.o
291
  WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
292
  NVCC = nvcc
293
  NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
@@ -299,6 +299,9 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h
299
  $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
300
  endif
301
 
 
 
 
302
  ifdef WHISPER_HIPBLAS
303
  ROCM_PATH ?= /opt/rocm
304
  HIPCC ?= $(ROCM_PATH)/bin/hipcc
@@ -404,7 +407,7 @@ ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
404
 
405
  WHISPER_OBJ += ggml.o ggml-alloc.o ggml-backend.o ggml-quants.o
406
 
407
- whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
408
  $(CXX) $(CXXFLAGS) -c $< -o $@
409
 
410
  ifndef WHISPER_COREML
 
286
 
287
  CFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
288
  CXXFLAGS += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
289
+ LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lcufft -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
290
+ WHISPER_OBJ += ggml-cuda.o whisper-mel-cuda.o
291
  WHISPER_OBJ += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
292
  NVCC = nvcc
293
  NVCCFLAGS = --forward-unknown-to-host-compiler -arch=$(CUDA_ARCH_FLAG)
 
299
  $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
300
  endif
301
 
302
+ whisper-mel-cuda.o: whisper-mel-cuda.cu whisper.h ggml.h ggml-backend.h whisper-mel.hpp whisper-mel-cuda.hpp
303
+ $(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
304
+
305
  ifdef WHISPER_HIPBLAS
306
  ROCM_PATH ?= /opt/rocm
307
  HIPCC ?= $(ROCM_PATH)/bin/hipcc
 
407
 
408
  WHISPER_OBJ += ggml.o ggml-alloc.o ggml-backend.o ggml-quants.o
409
 
410
+ whisper.o: whisper.cpp whisper.h whisper-mel.hpp ggml.h ggml-cuda.h
411
  $(CXX) $(CXXFLAGS) -c $< -o $@
412
 
413
  ifndef WHISPER_COREML
bindings/ruby/ext/extconf.rb CHANGED
@@ -1,6 +1,7 @@
1
  require 'mkmf'
2
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
3
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
 
4
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
5
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
6
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")
 
1
  require 'mkmf'
2
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.cpp')} .")
3
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper.h')} .")
4
+ system("cp #{File.join(File.dirname(__FILE__),'..','..','..','whisper-mel.hpp')} .")
5
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.h')} .")
6
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml.c')} .")
7
  system("cp #{File.join(File.dirname(__FILE__),'..','..','..','ggml-impl.h')} .")
whisper-mel-cuda.cu ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #define CUB_IGNORE_DEPRECATED_CPP_DIALECT
2
+ #include "whisper-mel-cuda.hpp"
3
+ #include "whisper.h"
4
+
5
+ #include <cuda.h>
6
+ #include <cuda_runtime.h>
7
+ #include <cufft.h>
8
+ #include <cublas_v2.h>
9
+ #include <cuComplex.h>
10
+ #include <cub/device/device_reduce.cuh>
11
+
12
+ #include <algorithm>
13
+
14
+ #if defined(_MSC_VER)
15
+ #pragma warning(disable: 4324) // added padding
16
+ #endif
17
+
18
+ #ifndef NDEBUG
19
+ # define DO_CHECKS 1
20
+ #else
21
+ # define DO_CHECKS 0
22
+ #endif
23
+
24
+ namespace {
25
+
26
+ #if DO_CHECKS
27
+ const char* cufftGetErrorString(cufftResult_t res) {
28
+ switch (res) {
29
+ case CUFFT_SUCCESS: return "The cuFFT operation was successful";
30
+ case CUFFT_INVALID_PLAN: return "cuFFT was passed an invalid plan handle";
31
+ case CUFFT_ALLOC_FAILED: return "cuFFT failed to allocate GPU or CPU memory";
32
+ case CUFFT_INVALID_TYPE: return "No longer used";
33
+ case CUFFT_INVALID_VALUE: return "User specified an invalid pointer or parameter";
34
+ case CUFFT_INTERNAL_ERROR: return "Driver or internal cuFFT library error";
35
+ case CUFFT_EXEC_FAILED: return "Failed to execute an FFT on the GPU";
36
+ case CUFFT_SETUP_FAILED: return "The cuFFT library failed to initialize";
37
+ case CUFFT_INVALID_SIZE: return "User specified an invalid transform size";
38
+ case CUFFT_UNALIGNED_DATA: return "No longer used";
39
+ case CUFFT_INCOMPLETE_PARAMETER_LIST: return "Missing parameters in call";
40
+ case CUFFT_INVALID_DEVICE: return "Execution of a plan was on different GPU than plan creation";
41
+ case CUFFT_PARSE_ERROR: return "Internal plan database error";
42
+ case CUFFT_NO_WORKSPACE: return "No workspace has been provided prior to plan execution";
43
+ case CUFFT_NOT_IMPLEMENTED: return "Function does not implement functionality for parameters given.";
44
+ case CUFFT_LICENSE_ERROR: return "Used in previous versions.";
45
+ case CUFFT_NOT_SUPPORTED: return "Operation is not supported for parameters given.";
46
+ default: return "Unknown error";
47
+ }
48
+ }
49
+
50
+ # define CUDA_CHECK_GEN(err, success, error_fn) \
51
+ do { \
52
+ auto err_ = (err); \
53
+ if (err_ != (success)) { \
54
+ fprintf(stderr, "%s %s:%d - %s\n", #err, __FILE__, __LINE__, error_fn(err_)); \
55
+ } \
56
+ } while (0)
57
+ #else
58
+ # define CUDA_CHECK_GEN(err, success, error_fn) err
59
+ #endif
60
+
61
+ #define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
62
+ #define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublasGetStatusString)
63
+ #define CUFFT_CHECK(err) CUDA_CHECK_GEN(err, CUFFT_SUCCESS, cufftGetErrorString)
64
+
65
+ __global__ void k_fill_stft_input(
66
+ const float * padded_samples,
67
+ const int n_frames,
68
+ const float * hann_window,
69
+ float * stft_in
70
+ ) {
71
+ auto y = blockIdx.y * blockDim.y + threadIdx.y;
72
+ // if (y >= n_frames) return;
73
+ auto x = blockIdx.x * blockDim.x + threadIdx.x;
74
+ // if (x >= WHISPER_N_FFT) return;
75
+
76
+ auto line = padded_samples + y * WHISPER_HOP_LENGTH;
77
+ auto outLine = stft_in + y * WHISPER_N_FFT;
78
+
79
+ outLine[x] = line[x] * hann_window[x];
80
+ }
81
+
82
+ __global__ void k_calc_magnitudes(
83
+ const cuComplex* stft_out,
84
+ const int n_frames,
85
+ float * magnitudes
86
+ ) {
87
+ auto y = blockIdx.y * blockDim.y + threadIdx.y;
88
+ // if (y >= n_frames) return;
89
+ auto x = blockIdx.x * blockDim.x + threadIdx.x;
90
+ // if (x >= WHISPER_N_FFT_HALF) return;
91
+
92
+ auto idx = y * WHISPER_N_FFT_HALF + x;
93
+
94
+ auto r = stft_out[idx].x;
95
+ auto i = stft_out[idx].y;
96
+ magnitudes[idx] = r * r + i * i;
97
+ }
98
+
99
+ __global__ void k_calc_log_mel(
100
+ const float * mel_data,
101
+ const int n_mel,
102
+ const float * max_val,
103
+ float * log_mel
104
+ ) {
105
+ auto x = blockIdx.x * blockDim.x + threadIdx.x;
106
+ if (x >= n_mel) return;
107
+
108
+ float val = mel_data[x];
109
+
110
+ constexpr float e = 1e-10f;
111
+ if (val < e) val = e;
112
+
113
+ val = log10(val);
114
+
115
+ const float max = log10(*max_val) - 8.f;
116
+ if (val < max) val = max;
117
+
118
+ log_mel[x] = (val + 4) / 4;
119
+ }
120
+
121
+ void fill_stft_input(
122
+ const float * padded_samples,
123
+ int n_frames,
124
+ const float * hann_window,
125
+ float * stft_in,
126
+ cudaStream_t stream
127
+ ) {
128
+ dim3 block(WHISPER_N_FFT, 1);
129
+ dim3 grid(1, n_frames);
130
+
131
+ k_fill_stft_input<<<grid, block, 0, stream>>>(padded_samples, n_frames, hann_window, stft_in);
132
+ }
133
+
134
+ void calc_magnitudes(
135
+ const cuComplex* stft_out,
136
+ int n_frames,
137
+ float * magnitudes,
138
+ cudaStream_t stream
139
+ ) {
140
+ dim3 block(WHISPER_N_FFT_HALF, 1);
141
+ dim3 grid(1, n_frames);
142
+ k_calc_magnitudes<<<grid, block, 0, stream>>>(stft_out, n_frames, magnitudes);
143
+ }
144
+
145
+ constexpr auto LOG_MEL_PREFIX_SIZE = 256;
146
+
147
+ size_t get_log_mel_temp_storage_size() {
148
+ constexpr auto maxPaddedSamples = 2 * WHISPER_N_SAMPLES + WHISPER_N_FFT;
149
+ constexpr auto maxFrames = 1 + (maxPaddedSamples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
150
+ constexpr auto maxMels = 160;
151
+
152
+ size_t nbytes = 0;
153
+ float * temp = nullptr;
154
+ cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, maxFrames * maxMels);
155
+ return nbytes + LOG_MEL_PREFIX_SIZE;
156
+ }
157
+
158
+ void calc_log_mel(
159
+ const float * mel_data,
160
+ int n_mel,
161
+ void * tempStorage,
162
+ int tempStorageSize,
163
+ float * log_mel,
164
+ cudaStream_t stream
165
+ ) {
166
+ float * max_val = reinterpret_cast<float *>(tempStorage);
167
+ void * maxTemp = reinterpret_cast<char*>(tempStorage) + LOG_MEL_PREFIX_SIZE;
168
+
169
+ size_t nbytes = size_t(tempStorageSize - LOG_MEL_PREFIX_SIZE);
170
+ cub::DeviceReduce::Max(maxTemp, nbytes, mel_data, max_val, n_mel, stream);
171
+
172
+ int block = 256;
173
+ int grid = (n_mel + block - 1) / block;
174
+
175
+ k_calc_log_mel<<<grid, block, 0, stream>>>(mel_data, n_mel, max_val, log_mel);
176
+ }
177
+
178
+ class mel_calc_cuda : public whisper_mel_calc {
179
+ const int m_n_mel;
180
+
181
+ ggml_backend_t m_backend = nullptr;
182
+
183
+ cudaStream_t m_stream = nullptr;
184
+ cublasHandle_t m_cublas_handle = nullptr;
185
+
186
+ float * m_hann_window = nullptr;
187
+
188
+ size_t m_cufft_workspace_size = 0;
189
+ void * m_cufft_workspace = nullptr;
190
+
191
+ float * m_filters = nullptr;
192
+
193
+ size_t m_log_mel_temp_storage_size = 0;
194
+ void * m_log_mel_temp_storage = nullptr;
195
+ public:
196
+ mel_calc_cuda(ggml_backend_t backend, const whisper_filters& filters)
197
+ : m_n_mel(filters.n_mel)
198
+ , m_backend(backend)
199
+ {
200
+ if (filters.n_fft != WHISPER_N_FFT_HALF) {
201
+ throw std::invalid_argument("MelFilters n_frames must be WHISPER_N_FFT_HALF");
202
+ }
203
+ assert(filters.data.size() == filters.n_mel * WHISPER_N_FFT_HALF);
204
+
205
+ CUDA_CHECK(cudaStreamCreate(&m_stream));
206
+ CUBLAS_CHECK(cublasCreate(&m_cublas_handle));
207
+ CUBLAS_CHECK(cublasSetMathMode(m_cublas_handle, CUBLAS_TF32_TENSOR_OP_MATH));
208
+ CUBLAS_CHECK(cublasSetStream(m_cublas_handle, m_stream));
209
+
210
+ // create Hann window
211
+ {
212
+ auto hw = whisper_mel_calc::hann_window();
213
+ CUDA_CHECK(cudaMallocAsync(&m_hann_window, hw.len * sizeof(float), m_stream));
214
+ CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream));
215
+ }
216
+
217
+ // create working area
218
+ {
219
+ constexpr auto maxPaddedSamples = 2 * WHISPER_N_SAMPLES + WHISPER_N_FFT;
220
+ constexpr auto maxFrames = 1 + (maxPaddedSamples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
221
+ CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, maxFrames, &m_cufft_workspace_size));
222
+ CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream));
223
+ }
224
+
225
+ // fill filters
226
+ {
227
+ auto& f = filters.data;
228
+ CUDA_CHECK(cudaMallocAsync(&m_filters, f.size() * sizeof(float), m_stream));
229
+ CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
230
+ }
231
+
232
+ {
233
+ m_log_mel_temp_storage_size = get_log_mel_temp_storage_size();
234
+ CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream));
235
+ }
236
+ }
237
+
238
+ ~mel_calc_cuda() {
239
+ CUDA_CHECK(cudaStreamSynchronize(m_stream));
240
+ CUDA_CHECK(cudaStreamDestroy(m_stream));
241
+ CUDA_CHECK(cudaFree(m_hann_window));
242
+ CUDA_CHECK(cudaFree(m_cufft_workspace));
243
+ CUDA_CHECK(cudaFree(m_filters));
244
+ CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
245
+ }
246
+
247
+ virtual whisper_mel calculate(whisper_span<const float> samples, int /*n_threads*/) const override {
248
+ const size_t mirror_pad = WHISPER_N_FFT / 2;
249
+ const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT;
250
+
251
+ // pad
252
+ std::vector<float> padded_samples(padded_size);
253
+ std::reverse_copy(samples.data + 1, samples.data + 1 + mirror_pad, padded_samples.begin()); // reflect
254
+ std::copy(samples.data, samples.data + samples.len, padded_samples.begin() + mirror_pad); // copy
255
+
256
+ // fill the rest of the data
257
+ // it should canonically be mirrored at the end as well,
258
+ // but we just assume the last MEL_FRAME_SIZE/2 samples are zeros
259
+ std::fill(padded_samples.begin() + mirror_pad + samples.len, padded_samples.end(), 0.f);
260
+
261
+ const auto n_frames = 1 + (padded_samples.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
262
+
263
+ float * cu_padded_samples = nullptr;
264
+ CUDA_CHECK(cudaMallocAsync(&cu_padded_samples, padded_samples.size() * sizeof(float), m_stream));
265
+ CUDA_CHECK(cudaMemcpyAsync(cu_padded_samples, padded_samples.data(), padded_samples.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
266
+
267
+ float * stft_in = nullptr; // contiguous buffer for stft input
268
+ CUDA_CHECK(cudaMallocAsync(&stft_in, n_frames * WHISPER_N_FFT * sizeof(float), m_stream));
269
+
270
+ fill_stft_input(cu_padded_samples, int(n_frames), m_hann_window, stft_in, m_stream);
271
+
272
+ cufftComplex* stft_out;
273
+ CUDA_CHECK(cudaMallocAsync(&stft_out, n_frames * WHISPER_N_FFT_HALF * sizeof(cufftComplex), m_stream));
274
+
275
+ cufftHandle plan;
276
+ CUFFT_CHECK(cufftCreate(&plan));
277
+ CUFFT_CHECK(cufftSetAutoAllocation(plan, 0));
278
+ {
279
+ size_t waSize;
280
+ CUFFT_CHECK(cufftMakePlan1d(plan, WHISPER_N_FFT, CUFFT_R2C, int(n_frames), &waSize));
281
+ assert(waSize <= m_cufft_workspace_size);
282
+ CUFFT_CHECK(cufftSetWorkArea(plan, m_cufft_workspace));
283
+ CUFFT_CHECK(cufftSetStream(plan, m_stream));
284
+ }
285
+ CUFFT_CHECK(cufftExecR2C(plan, stft_in, stft_out));
286
+
287
+ const auto n_mag_frames = n_frames - 1; // drop last frame
288
+ float * magnitudes;
289
+ CUDA_CHECK(cudaMallocAsync(&magnitudes, n_mag_frames * WHISPER_N_FFT_HALF * sizeof(float), m_stream));
290
+ calc_magnitudes(stft_out, int(n_mag_frames), magnitudes, m_stream);
291
+
292
+ float * mel_data = nullptr;
293
+ CUDA_CHECK(cudaMallocAsync(&mel_data, m_n_mel * n_mag_frames * sizeof(float), m_stream));
294
+
295
+ const float fone = 1.0f, fzero = 0.0f;
296
+ CUBLAS_CHECK(cublasSgemm(m_cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N,
297
+ int(n_mag_frames), m_n_mel, WHISPER_N_FFT_HALF,
298
+ &fone,
299
+ magnitudes, WHISPER_N_FFT_HALF,
300
+ m_filters, WHISPER_N_FFT_HALF,
301
+ &fzero,
302
+ mel_data, int(n_mag_frames)));
303
+
304
+ float * log_mels = nullptr;
305
+ CUDA_CHECK(cudaMallocAsync(&log_mels, m_n_mel * n_mag_frames * sizeof(float), m_stream));
306
+
307
+ calc_log_mel(
308
+ mel_data, int(m_n_mel * n_mag_frames),
309
+ m_log_mel_temp_storage, int(m_log_mel_temp_storage_size),
310
+ log_mels, m_stream);
311
+
312
+ whisper_mel ret;
313
+ ret.n_mel = m_n_mel;
314
+ ret.n_len = int(n_mag_frames);
315
+ // Calculate semi-padded sample length to ensure compatibility
316
+ ret.n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
317
+ ret.data.resize(m_n_mel * n_mag_frames);
318
+ CUDA_CHECK(cudaMemcpyAsync(ret.data.data(), log_mels, ret.data.size() * sizeof(float), cudaMemcpyDeviceToHost, m_stream));
319
+
320
+ CUDA_CHECK(cudaStreamSynchronize(m_stream));
321
+
322
+ // cleanup
323
+ CUFFT_CHECK(cufftDestroy(plan));
324
+ CUDA_CHECK(cudaFreeAsync(log_mels, m_stream));
325
+ CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
326
+ CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
327
+ CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));
328
+ CUDA_CHECK(cudaFreeAsync(stft_in, m_stream));
329
+ CUDA_CHECK(cudaFreeAsync(cu_padded_samples, m_stream));
330
+
331
+ return ret;
332
+ }
333
+ };
334
+
335
+ }
336
+
337
+ whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters) {
338
+ if (filters.n_fft != WHISPER_N_FFT_HALF) {
339
+ return nullptr;
340
+ }
341
+ return new mel_calc_cuda(backend, filters);
342
+ }
whisper-mel-cuda.hpp ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #include "whisper-mel.hpp"
2
+
3
+ whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters);
whisper-mel.hpp ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include "ggml-backend.h"
3
+ #include <vector>
4
+
5
+ struct whisper_mel {
6
+ int n_len;
7
+ int n_len_org;
8
+ int n_mel;
9
+
10
+ std::vector<float> data;
11
+ };
12
+
13
+ struct whisper_filters {
14
+ int32_t n_mel;
15
+ int32_t n_fft;
16
+
17
+ std::vector<float> data;
18
+ };
19
+
20
+ template <typename T>
21
+ struct whisper_span {
22
+ T * data;
23
+ int len;
24
+ };
25
+
26
+ struct whisper_mel_calc {
27
+ virtual ~whisper_mel_calc();
28
+ virtual whisper_mel calculate(whisper_span<const float> samples, int n_threads) const = 0;
29
+ static whisper_span<const float> hann_window();
30
+ };
31
+
32
+ // returns a new pointer which needs to be freed with delete
33
+ whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper_filters & filters);
whisper.cpp CHANGED
@@ -10,6 +10,7 @@
10
 
11
  #ifdef GGML_USE_CUDA
12
  #include "ggml-cuda.h"
 
13
  #endif
14
 
15
  #ifdef GGML_USE_SYCL
@@ -24,6 +25,8 @@
24
  #include "ggml-alloc.h"
25
  #include "ggml-backend.h"
26
 
 
 
27
  #include <atomic>
28
  #include <algorithm>
29
  #include <cassert>
@@ -380,21 +383,6 @@ static const std::map<whisper_alignment_heads_preset, whisper_aheads> g_aheads {
380
 
381
  static std::vector<uint32_t> get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int32_t n_text_layer, int32_t n_head);
382
 
383
- struct whisper_mel {
384
- int n_len;
385
- int n_len_org;
386
- int n_mel;
387
-
388
- std::vector<float> data;
389
- };
390
-
391
- struct whisper_filters {
392
- int32_t n_mel;
393
- int32_t n_fft;
394
-
395
- std::vector<float> data;
396
- };
397
-
398
  struct whisper_vocab {
399
  using id = int32_t;
400
  using token = std::string;
@@ -883,6 +871,8 @@ struct whisper_context {
883
  whisper_model model;
884
  whisper_vocab vocab;
885
 
 
 
886
  whisper_state * state = nullptr;
887
 
888
  ggml_backend_t backend = nullptr;
@@ -2894,6 +2884,14 @@ struct whisper_global_cache {
2894
  } global_cache;
2895
  }
2896
 
 
 
 
 
 
 
 
 
2897
  // naive Discrete Fourier Transform
2898
  // input is real-valued
2899
  // output is complex-valued
@@ -2976,8 +2974,10 @@ static void fft(const std::vector<float> & in, std::vector<float> & out) {
2976
  }
2977
 
2978
  static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
2979
- int n_samples, int frame_size, int frame_step, int n_threads,
2980
  const whisper_filters & filters, whisper_mel & mel) {
 
 
2981
  std::vector<float> fft_in(frame_size, 0.0);
2982
  std::vector<float> fft_out(2 * frame_size);
2983
  int n_fft = filters.n_fft;
@@ -3041,99 +3041,95 @@ static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const
3041
  }
3042
  }
3043
  }
 
 
 
 
3044
 
3045
- // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
3046
- static bool log_mel_spectrogram(
3047
- whisper_state & wstate,
3048
- const float * samples,
3049
- const int n_samples,
3050
- const int /*sample_rate*/,
3051
- const int frame_size,
3052
- const int frame_step,
3053
- const int n_mel,
3054
- const int n_threads,
3055
- const whisper_filters & filters,
3056
- const bool debug,
3057
- whisper_mel & mel) {
3058
- const int64_t t_start_us = ggml_time_us();
3059
 
3060
- // Hann window
3061
- WHISPER_ASSERT(frame_size == WHISPER_N_FFT && "Unsupported frame_size");
3062
- const float * hann = global_cache.hann_window;
3063
 
3064
- // Calculate the length of padding
3065
- int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
3066
- int64_t stage_2_pad = frame_size / 2;
3067
 
3068
- // Initialize a vector and copy data from C array to it.
3069
- std::vector<float> samples_padded;
3070
- samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
3071
- std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
3072
 
3073
- // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
3074
- std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
3075
 
3076
- // reflective pad 200 samples at the beginning of audio
3077
- std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
3078
 
3079
- mel.n_mel = n_mel;
3080
- // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
3081
- // Calculate number of frames + remove the last frame
3082
- mel.n_len = (samples_padded.size() - frame_size) / frame_step;
3083
- // Calculate semi-padded sample length to ensure compatibility
3084
- mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step;
3085
- mel.data.resize(mel.n_mel * mel.n_len);
 
3086
 
3087
 
3088
- {
3089
- std::vector<std::thread> workers(n_threads - 1);
3090
- for (int iw = 0; iw < n_threads - 1; ++iw) {
3091
- workers[iw] = std::thread(
3092
- log_mel_spectrogram_worker_thread, iw + 1, hann, samples_padded,
3093
- n_samples + stage_2_pad, frame_size, frame_step, n_threads,
3094
- std::cref(filters), std::ref(mel));
3095
- }
3096
-
3097
- // main thread
3098
- log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel);
3099
 
3100
- for (int iw = 0; iw < n_threads - 1; ++iw) {
3101
- workers[iw].join();
3102
- }
3103
- }
3104
 
3105
- // clamping and normalization
3106
- double mmax = -1e20;
3107
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
3108
- if (mel.data[i] > mmax) {
3109
- mmax = mel.data[i];
3110
  }
3111
- }
3112
-
3113
- mmax -= 8.0;
3114
 
3115
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
3116
- if (mel.data[i] < mmax) {
3117
- mel.data[i] = mmax;
 
 
 
3118
  }
3119
 
3120
- mel.data[i] = (mel.data[i] + 4.0)/4.0;
3121
- }
3122
 
3123
- wstate.t_mel_us += ggml_time_us() - t_start_us;
 
 
 
3124
 
3125
- // Dump log_mel_spectrogram
3126
- if (debug) {
3127
- std::ofstream outFile("log_mel_spectrogram.json");
3128
- outFile << "[";
3129
- for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
3130
- outFile << mel.data[i] << ", ";
3131
  }
3132
- outFile << mel.data[mel.data.size() - 1] << "]";
3133
- outFile.close();
3134
  }
 
 
3135
 
3136
- return true;
 
 
 
 
 
 
 
 
 
 
3137
  }
3138
 
3139
  // split text into tokens
@@ -3593,6 +3589,8 @@ struct whisper_context * whisper_init_with_params_no_state(struct whisper_model_
3593
  return nullptr;
3594
  }
3595
 
 
 
3596
  loader->close(loader->context);
3597
 
3598
  return ctx;
@@ -3713,6 +3711,8 @@ void whisper_free(struct whisper_context * ctx) {
3713
 
3714
  ggml_backend_free(ctx->backend);
3715
 
 
 
3716
  delete ctx;
3717
  }
3718
  }
@@ -3730,11 +3730,21 @@ void whisper_free_params(struct whisper_full_params * params) {
3730
  }
3731
 
3732
  int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
3733
- if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, ctx->model.filters.n_mel, n_threads, ctx->model.filters, false, state->mel)) {
3734
- WHISPER_LOG_ERROR("%s: failed to compute mel spectrogram\n", __func__);
3735
- return -1;
3736
- }
3737
 
 
 
 
 
 
 
 
 
 
 
 
3738
  return 0;
3739
  }
3740
 
 
10
 
11
  #ifdef GGML_USE_CUDA
12
  #include "ggml-cuda.h"
13
+ #include "whisper-mel-cuda.hpp"
14
  #endif
15
 
16
  #ifdef GGML_USE_SYCL
 
25
  #include "ggml-alloc.h"
26
  #include "ggml-backend.h"
27
 
28
+ #include "whisper-mel.hpp"
29
+
30
  #include <atomic>
31
  #include <algorithm>
32
  #include <cassert>
 
383
 
384
  static std::vector<uint32_t> get_alignment_heads_by_layer(const whisper_context_params & cparams, int il, int32_t n_text_layer, int32_t n_head);
385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386
  struct whisper_vocab {
387
  using id = int32_t;
388
  using token = std::string;
 
871
  whisper_model model;
872
  whisper_vocab vocab;
873
 
874
+ whisper_mel_calc * mel_calc = nullptr;
875
+
876
  whisper_state * state = nullptr;
877
 
878
  ggml_backend_t backend = nullptr;
 
2884
  } global_cache;
2885
  }
2886
 
2887
+ // Mel spectrogram
2888
+
2889
+ whisper_mel_calc::~whisper_mel_calc() = default; // export vtable
2890
+
2891
+ whisper_span<const float> whisper_mel_calc::hann_window() {
2892
+ return {global_cache.hann_window, WHISPER_N_FFT};
2893
+ }
2894
+
2895
  // naive Discrete Fourier Transform
2896
  // input is real-valued
2897
  // output is complex-valued
 
2974
  }
2975
 
2976
  static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
2977
+ int n_samples, int n_threads,
2978
  const whisper_filters & filters, whisper_mel & mel) {
2979
+ const auto frame_size = WHISPER_N_FFT;
2980
+ const auto frame_step = WHISPER_HOP_LENGTH;
2981
  std::vector<float> fft_in(frame_size, 0.0);
2982
  std::vector<float> fft_out(2 * frame_size);
2983
  int n_fft = filters.n_fft;
 
3041
  }
3042
  }
3043
  }
3044
+ namespace {
3045
+ struct mel_calc_cpu : public whisper_mel_calc {
3046
+ const whisper_filters& m_filters;
3047
+ mel_calc_cpu(const whisper_filters & filters) : m_filters(filters) {}
3048
 
3049
+ // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
3050
+ whisper_mel calculate(whisper_span<const float> ssamples, int n_threads) const override {
3051
+ // Hann window
3052
+ const float * hann = global_cache.hann_window;
 
 
 
 
 
 
 
 
 
 
3053
 
3054
+ // Calculate the length of padding
3055
+ int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
3056
+ int64_t stage_2_pad = WHISPER_N_FFT / 2;
3057
 
3058
+ const int n_samples = int(ssamples.len);
3059
+ const float * samples = ssamples.data;
 
3060
 
3061
+ // Initialize a vector and copy data from C array to it.
3062
+ std::vector<float> samples_padded;
3063
+ samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
3064
+ std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
3065
 
3066
+ // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
3067
+ std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
3068
 
3069
+ // reflective pad 200 samples at the beginning of audio
3070
+ std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
3071
 
3072
+ whisper_mel mel;
3073
+ mel.n_mel = m_filters.n_mel;
3074
+ // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
3075
+ // Calculate number of frames + remove the last frame
3076
+ mel.n_len = (samples_padded.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
3077
+ // Calculate semi-padded sample length to ensure compatibility
3078
+ mel.n_len_org = 1 + (n_samples + stage_2_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
3079
+ mel.data.resize(mel.n_mel * mel.n_len);
3080
 
3081
 
3082
+ {
3083
+ std::vector<std::thread> workers(n_threads - 1);
3084
+ for (int iw = 0; iw < n_threads - 1; ++iw) {
3085
+ workers[iw] = std::thread(
3086
+ log_mel_spectrogram_worker_thread, iw + 1, hann, samples_padded,
3087
+ n_samples + stage_2_pad, n_threads,
3088
+ std::cref(m_filters), std::ref(mel));
3089
+ }
 
 
 
3090
 
3091
+ // main thread
3092
+ log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, n_threads, m_filters, mel);
 
 
3093
 
3094
+ for (int iw = 0; iw < n_threads - 1; ++iw) {
3095
+ workers[iw].join();
3096
+ }
 
 
3097
  }
 
 
 
3098
 
3099
+ // clamping and normalization
3100
+ double mmax = -1e20;
3101
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
3102
+ if (mel.data[i] > mmax) {
3103
+ mmax = mel.data[i];
3104
+ }
3105
  }
3106
 
3107
+ mmax -= 8.0;
 
3108
 
3109
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
3110
+ if (mel.data[i] < mmax) {
3111
+ mel.data[i] = mmax;
3112
+ }
3113
 
3114
+ mel.data[i] = (mel.data[i] + 4.0)/4.0;
 
 
 
 
 
3115
  }
3116
+
3117
+ return mel;
3118
  }
3119
+ };
3120
+ }
3121
 
3122
+ whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper_filters & filters) {
3123
+ #if GGML_USE_CUDA
3124
+ if (ggml_backend_is_cuda(backend)) {
3125
+ auto ret = whisper_mel_calc_create_cuda(backend, filters);
3126
+ // run a warmup to avoid the first kernel launch overhead (thus we get the best perf even on the first run)
3127
+ const float warmup[256] = {0};
3128
+ ret->calculate({warmup, 256}, 1);
3129
+ return ret;
3130
+ } else
3131
+ #endif
3132
+ return new mel_calc_cpu(filters);
3133
  }
3134
 
3135
  // split text into tokens
 
3589
  return nullptr;
3590
  }
3591
 
3592
+ ctx->mel_calc = whisper_mel_calc_create(ctx->backend, ctx->model.filters);
3593
+
3594
  loader->close(loader->context);
3595
 
3596
  return ctx;
 
3711
 
3712
  ggml_backend_free(ctx->backend);
3713
 
3714
+ delete ctx->mel_calc;
3715
+ ctx->mel_calc = nullptr;
3716
  delete ctx;
3717
  }
3718
  }
 
3730
  }
3731
 
3732
  int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
3733
+ const int64_t t_start_us = ggml_time_us();
3734
+ state->mel = ctx->mel_calc->calculate({samples, n_samples}, n_threads);
3735
+ state->t_mel_us += ggml_time_us() - t_start_us;
 
3736
 
3737
+ // Dump log_mel_spectrogram
3738
+ //{
3739
+ // auto& mel = state->mel;
3740
+ // std::ofstream outFile("log_mel_spectrogram.json");
3741
+ // outFile << "[";
3742
+ // for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
3743
+ // outFile << mel.data[i] << ", ";
3744
+ // }
3745
+ // outFile << mel.data[mel.data.size() - 1] << "]";
3746
+ // outFile.close();
3747
+ //}
3748
  return 0;
3749
  }
3750
 
whisper.h CHANGED
@@ -31,8 +31,10 @@
31
 
32
  #define WHISPER_SAMPLE_RATE 16000
33
  #define WHISPER_N_FFT 400
 
34
  #define WHISPER_HOP_LENGTH 160
35
  #define WHISPER_CHUNK_SIZE 30
 
36
 
37
  #ifdef __cplusplus
38
  extern "C" {
 
31
 
32
  #define WHISPER_SAMPLE_RATE 16000
33
  #define WHISPER_N_FFT 400
34
+ #define WHISPER_N_FFT_HALF (WHISPER_N_FFT / 2 + 1)
35
  #define WHISPER_HOP_LENGTH 160
36
  #define WHISPER_CHUNK_SIZE 30
37
+ #define WHISPER_N_SAMPLES (WHISPER_SAMPLE_RATE * WHISPER_CHUNK_SIZE)
38
 
39
  #ifdef __cplusplus
40
  extern "C" {