Spaces:
Running
Running
whisper : add GPU support via cuBLAS (#834)
Browse files* make : add WHISPER_CUBLAS
* make : fix CUBLAS build
* whisper : disable Flash Attention + adjust memory buffers
* whisper : remove old commented code
* readme : add cuBLAS instructions
* cmake : add WHISPER_CUBLAS option
* gitignore : ignore build-cublas
- .gitignore +1 -0
- CMakeLists.txt +36 -3
- Makefile +20 -8
- README.md +20 -6
- examples/CMakeLists.txt +2 -2
- examples/command/CMakeLists.txt +1 -1
- examples/stream/CMakeLists.txt +1 -1
- examples/talk-llama/CMakeLists.txt +1 -1
- examples/talk/CMakeLists.txt +1 -1
- whisper.cpp +14 -23
.gitignore
CHANGED
|
@@ -12,6 +12,7 @@ build-em/
|
|
| 12 |
build-debug/
|
| 13 |
build-release/
|
| 14 |
build-static/
|
|
|
|
| 15 |
build-no-accel/
|
| 16 |
build-sanitize-addr/
|
| 17 |
build-sanitize-thread/
|
|
|
|
| 12 |
build-debug/
|
| 13 |
build-release/
|
| 14 |
build-static/
|
| 15 |
+
build-cublas/
|
| 16 |
build-no-accel/
|
| 17 |
build-sanitize-addr/
|
| 18 |
build-sanitize-thread/
|
CMakeLists.txt
CHANGED
|
@@ -51,7 +51,7 @@ option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
|
|
| 51 |
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
|
| 52 |
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
|
| 53 |
|
| 54 |
-
option(
|
| 55 |
|
| 56 |
if (APPLE)
|
| 57 |
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
|
@@ -62,7 +62,8 @@ if (APPLE)
|
|
| 62 |
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
| 63 |
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
|
| 64 |
else()
|
| 65 |
-
option(
|
|
|
|
| 66 |
endif()
|
| 67 |
|
| 68 |
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
|
@@ -127,7 +128,7 @@ if (APPLE)
|
|
| 127 |
endif()
|
| 128 |
endif()
|
| 129 |
|
| 130 |
-
if (
|
| 131 |
find_library(OPENBLAS_LIB
|
| 132 |
NAMES openblas libopenblas
|
| 133 |
)
|
|
@@ -141,6 +142,31 @@ if (WHISPER_SUPPORT_OPENBLAS)
|
|
| 141 |
endif()
|
| 142 |
endif()
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
# compiler flags
|
| 145 |
|
| 146 |
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
|
@@ -247,6 +273,7 @@ set(TARGET whisper)
|
|
| 247 |
add_library(${TARGET}
|
| 248 |
ggml.h
|
| 249 |
ggml.c
|
|
|
|
| 250 |
whisper.h
|
| 251 |
whisper.cpp
|
| 252 |
)
|
|
@@ -279,6 +306,12 @@ if (BUILD_SHARED_LIBS)
|
|
| 279 |
)
|
| 280 |
endif()
|
| 281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
if (EMSCRIPTEN)
|
| 283 |
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
|
| 284 |
endif()
|
|
|
|
| 51 |
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
|
| 52 |
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
|
| 53 |
|
| 54 |
+
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
|
| 55 |
|
| 56 |
if (APPLE)
|
| 57 |
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
|
|
|
| 62 |
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
| 63 |
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
|
| 64 |
else()
|
| 65 |
+
option(WHISPER_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
| 66 |
+
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
|
| 67 |
endif()
|
| 68 |
|
| 69 |
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
|
|
|
| 128 |
endif()
|
| 129 |
endif()
|
| 130 |
|
| 131 |
+
if (WHISPER_OPENBLAS)
|
| 132 |
find_library(OPENBLAS_LIB
|
| 133 |
NAMES openblas libopenblas
|
| 134 |
)
|
|
|
|
| 142 |
endif()
|
| 143 |
endif()
|
| 144 |
|
| 145 |
+
if (WHISPER_CUBLAS)
|
| 146 |
+
cmake_minimum_required(VERSION 3.17)
|
| 147 |
+
|
| 148 |
+
find_package(CUDAToolkit)
|
| 149 |
+
|
| 150 |
+
if (CUDAToolkit_FOUND)
|
| 151 |
+
message(STATUS "cuBLAS found")
|
| 152 |
+
|
| 153 |
+
enable_language(CUDA)
|
| 154 |
+
|
| 155 |
+
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
| 156 |
+
|
| 157 |
+
add_compile_definitions(GGML_USE_CUBLAS)
|
| 158 |
+
|
| 159 |
+
if (WHISPER_STATIC)
|
| 160 |
+
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
| 161 |
+
else()
|
| 162 |
+
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
| 163 |
+
endif()
|
| 164 |
+
|
| 165 |
+
else()
|
| 166 |
+
message(WARNING "cuBLAS not found")
|
| 167 |
+
endif()
|
| 168 |
+
endif()
|
| 169 |
+
|
| 170 |
# compiler flags
|
| 171 |
|
| 172 |
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
|
|
|
| 273 |
add_library(${TARGET}
|
| 274 |
ggml.h
|
| 275 |
ggml.c
|
| 276 |
+
${GGML_CUDA_SOURCES}
|
| 277 |
whisper.h
|
| 278 |
whisper.cpp
|
| 279 |
)
|
|
|
|
| 306 |
)
|
| 307 |
endif()
|
| 308 |
|
| 309 |
+
if (GGML_CUDA_SOURCES)
|
| 310 |
+
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
| 311 |
+
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
|
| 312 |
+
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
| 313 |
+
endif()
|
| 314 |
+
|
| 315 |
if (EMSCRIPTEN)
|
| 316 |
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
|
| 317 |
endif()
|
Makefile
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
ifndef UNAME_S
|
| 2 |
UNAME_S := $(shell uname -s)
|
| 3 |
endif
|
|
@@ -157,6 +159,18 @@ ifdef WHISPER_OPENBLAS
|
|
| 157 |
LDFLAGS += -lopenblas
|
| 158 |
endif
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
ifdef WHISPER_GPROF
|
| 161 |
CFLAGS += -pg
|
| 162 |
CXXFLAGS += -pg
|
|
@@ -200,20 +214,18 @@ $(info I CC: $(CCV))
|
|
| 200 |
$(info I CXX: $(CXXV))
|
| 201 |
$(info )
|
| 202 |
|
| 203 |
-
default: main bench
|
| 204 |
-
|
| 205 |
#
|
| 206 |
# Build library
|
| 207 |
#
|
| 208 |
|
| 209 |
-
ggml.o: ggml.c ggml.h
|
| 210 |
-
$(CC) $(CFLAGS) -c
|
| 211 |
|
| 212 |
-
whisper.o: whisper.cpp whisper.h ggml.h
|
| 213 |
-
$(CXX) $(CXXFLAGS) -c
|
| 214 |
|
| 215 |
ifndef WHISPER_COREML
|
| 216 |
-
WHISPER_OBJ
|
| 217 |
else
|
| 218 |
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
| 219 |
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
|
@@ -221,7 +233,7 @@ whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
|
| 221 |
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
| 222 |
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
| 223 |
|
| 224 |
-
WHISPER_OBJ
|
| 225 |
endif
|
| 226 |
|
| 227 |
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
|
|
|
| 1 |
+
default: main bench
|
| 2 |
+
|
| 3 |
ifndef UNAME_S
|
| 4 |
UNAME_S := $(shell uname -s)
|
| 5 |
endif
|
|
|
|
| 159 |
LDFLAGS += -lopenblas
|
| 160 |
endif
|
| 161 |
|
| 162 |
+
ifdef WHISPER_CUBLAS
|
| 163 |
+
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
| 164 |
+
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
| 165 |
+
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
| 166 |
+
WHISPER_OBJ += ggml-cuda.o
|
| 167 |
+
NVCC = nvcc
|
| 168 |
+
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
|
| 169 |
+
|
| 170 |
+
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
| 171 |
+
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
| 172 |
+
endif
|
| 173 |
+
|
| 174 |
ifdef WHISPER_GPROF
|
| 175 |
CFLAGS += -pg
|
| 176 |
CXXFLAGS += -pg
|
|
|
|
| 214 |
$(info I CXX: $(CXXV))
|
| 215 |
$(info )
|
| 216 |
|
|
|
|
|
|
|
| 217 |
#
|
| 218 |
# Build library
|
| 219 |
#
|
| 220 |
|
| 221 |
+
ggml.o: ggml.c ggml.h ggml-cuda.h
|
| 222 |
+
$(CC) $(CFLAGS) -c $< -o $@
|
| 223 |
|
| 224 |
+
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
|
| 225 |
+
$(CXX) $(CXXFLAGS) -c $< -o $@
|
| 226 |
|
| 227 |
ifndef WHISPER_COREML
|
| 228 |
+
WHISPER_OBJ += whisper.o
|
| 229 |
else
|
| 230 |
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
| 231 |
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
|
|
|
| 233 |
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
| 234 |
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
| 235 |
|
| 236 |
+
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
|
| 237 |
endif
|
| 238 |
|
| 239 |
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
README.md
CHANGED
|
@@ -18,6 +18,7 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
|
|
| 18 |
- Low memory usage (Flash Attention)
|
| 19 |
- Zero memory allocations at runtime
|
| 20 |
- Runs on the CPU
|
|
|
|
| 21 |
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
| 22 |
|
| 23 |
Supported platforms:
|
|
@@ -254,7 +255,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
|
| 254 |
# using Makefile
|
| 255 |
make clean
|
| 256 |
WHISPER_COREML=1 make -j
|
| 257 |
-
|
| 258 |
# using CMake
|
| 259 |
cd build
|
| 260 |
cmake -DWHISPER_COREML=1 ..
|
|
@@ -271,20 +272,33 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
|
| 271 |
whisper_init_state: first run on a device may take a while ...
|
| 272 |
whisper_init_state: Core ML model loaded
|
| 273 |
|
| 274 |
-
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
|
| 275 |
|
| 276 |
...
|
| 277 |
```
|
| 278 |
|
| 279 |
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
|
| 280 |
Next runs are faster.
|
| 281 |
-
|
| 282 |
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
## Limitations
|
| 285 |
|
| 286 |
- Inference only
|
| 287 |
-
- No GPU support (yet)
|
| 288 |
|
| 289 |
## Another example
|
| 290 |
|
|
@@ -429,7 +443,7 @@ system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1
|
|
| 429 |
|
| 430 |
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
| 431 |
|
| 432 |
-
[00:00:00.000 --> 00:00:00.320]
|
| 433 |
[00:00:00.320 --> 00:00:00.370] And
|
| 434 |
[00:00:00.370 --> 00:00:00.690] so
|
| 435 |
[00:00:00.690 --> 00:00:00.850] my
|
|
|
|
| 18 |
- Low memory usage (Flash Attention)
|
| 19 |
- Zero memory allocations at runtime
|
| 20 |
- Runs on the CPU
|
| 21 |
+
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
| 22 |
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
| 23 |
|
| 24 |
Supported platforms:
|
|
|
|
| 255 |
# using Makefile
|
| 256 |
make clean
|
| 257 |
WHISPER_COREML=1 make -j
|
| 258 |
+
|
| 259 |
# using CMake
|
| 260 |
cd build
|
| 261 |
cmake -DWHISPER_COREML=1 ..
|
|
|
|
| 272 |
whisper_init_state: first run on a device may take a while ...
|
| 273 |
whisper_init_state: Core ML model loaded
|
| 274 |
|
| 275 |
+
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
|
| 276 |
|
| 277 |
...
|
| 278 |
```
|
| 279 |
|
| 280 |
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
|
| 281 |
Next runs are faster.
|
| 282 |
+
|
| 283 |
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
|
| 284 |
+
|
| 285 |
+
## NVIDIA GPU support via cuBLAS
|
| 286 |
+
|
| 287 |
+
With NVIDIA cards, the Encoder processing can be offloaded to the GPU to a large extend through cuBLAS.
|
| 288 |
+
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
|
| 289 |
+
|
| 290 |
+
Now build `whisper.cpp` with cuBLAS support:
|
| 291 |
+
|
| 292 |
+
```
|
| 293 |
+
make clean
|
| 294 |
+
WHISPER_CUBLAS=1 make -j
|
| 295 |
+
```
|
| 296 |
+
|
| 297 |
+
Run all the examples as usual.
|
| 298 |
+
|
| 299 |
## Limitations
|
| 300 |
|
| 301 |
- Inference only
|
|
|
|
| 302 |
|
| 303 |
## Another example
|
| 304 |
|
|
|
|
| 443 |
|
| 444 |
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
| 445 |
|
| 446 |
+
[00:00:00.000 --> 00:00:00.320]
|
| 447 |
[00:00:00.320 --> 00:00:00.370] And
|
| 448 |
[00:00:00.370 --> 00:00:00.690] so
|
| 449 |
[00:00:00.690 --> 00:00:00.850] my
|
examples/CMakeLists.txt
CHANGED
|
@@ -4,7 +4,7 @@ find_package(Threads REQUIRED)
|
|
| 4 |
|
| 5 |
# third-party
|
| 6 |
|
| 7 |
-
if (
|
| 8 |
# SDL2
|
| 9 |
find_package(SDL2 REQUIRED)
|
| 10 |
|
|
@@ -27,7 +27,7 @@ include(DefaultTargetOptions)
|
|
| 27 |
|
| 28 |
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
| 29 |
|
| 30 |
-
if (
|
| 31 |
# common-sdl
|
| 32 |
|
| 33 |
set(TARGET common-sdl)
|
|
|
|
| 4 |
|
| 5 |
# third-party
|
| 6 |
|
| 7 |
+
if (WHISPER_SDL2)
|
| 8 |
# SDL2
|
| 9 |
find_package(SDL2 REQUIRED)
|
| 10 |
|
|
|
|
| 27 |
|
| 28 |
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
| 29 |
|
| 30 |
+
if (WHISPER_SDL2)
|
| 31 |
# common-sdl
|
| 32 |
|
| 33 |
set(TARGET common-sdl)
|
examples/command/CMakeLists.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
if (
|
| 2 |
# command
|
| 3 |
set(TARGET command)
|
| 4 |
add_executable(${TARGET} command.cpp)
|
|
|
|
| 1 |
+
if (WHISPER_SDL2)
|
| 2 |
# command
|
| 3 |
set(TARGET command)
|
| 4 |
add_executable(${TARGET} command.cpp)
|
examples/stream/CMakeLists.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
if (
|
| 2 |
# stream
|
| 3 |
set(TARGET stream)
|
| 4 |
add_executable(${TARGET} stream.cpp)
|
|
|
|
| 1 |
+
if (WHISPER_SDL2)
|
| 2 |
# stream
|
| 3 |
set(TARGET stream)
|
| 4 |
add_executable(${TARGET} stream.cpp)
|
examples/talk-llama/CMakeLists.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
if (
|
| 2 |
# talk-llama
|
| 3 |
set(TARGET talk-llama)
|
| 4 |
#add_executable(${TARGET} talk-llama.cpp llama.cpp)
|
|
|
|
| 1 |
+
if (WHISPER_SDL2)
|
| 2 |
# talk-llama
|
| 3 |
set(TARGET talk-llama)
|
| 4 |
#add_executable(${TARGET} talk-llama.cpp llama.cpp)
|
examples/talk/CMakeLists.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
if (
|
| 2 |
# talk
|
| 3 |
set(TARGET talk)
|
| 4 |
#add_executable(${TARGET} talk.cpp gpt-2.cpp)
|
|
|
|
| 1 |
+
if (WHISPER_SDL2)
|
| 2 |
# talk
|
| 3 |
set(TARGET talk)
|
| 4 |
#add_executable(${TARGET} talk.cpp gpt-2.cpp)
|
whisper.cpp
CHANGED
|
@@ -102,7 +102,7 @@ static void byteswap_tensor(ggml_tensor * tensor) {
|
|
| 102 |
#define WHISPER_PRINT_DEBUG(...)
|
| 103 |
#endif
|
| 104 |
|
| 105 |
-
|
| 106 |
//#define WHISPER_USE_FLASH_FF
|
| 107 |
#define WHISPER_MAX_DECODERS 16
|
| 108 |
|
|
@@ -224,11 +224,11 @@ static const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
|
| 224 |
static const size_t MB = 1ull*1024*1024;
|
| 225 |
|
| 226 |
static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
|
| 227 |
-
{ MODEL_TINY,
|
| 228 |
-
{ MODEL_BASE,
|
| 229 |
-
{ MODEL_SMALL,
|
| 230 |
-
{ MODEL_MEDIUM,
|
| 231 |
-
{ MODEL_LARGE,
|
| 232 |
};
|
| 233 |
|
| 234 |
static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
|
|
@@ -280,11 +280,11 @@ static const std::map<e_model, size_t> MEM_REQ_KV_CROSS = {
|
|
| 280 |
};
|
| 281 |
|
| 282 |
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
| 283 |
-
{ MODEL_TINY,
|
| 284 |
-
{ MODEL_BASE,
|
| 285 |
-
{ MODEL_SMALL,
|
| 286 |
-
{ MODEL_MEDIUM,
|
| 287 |
-
{ MODEL_LARGE,
|
| 288 |
};
|
| 289 |
|
| 290 |
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
|
@@ -1554,26 +1554,17 @@ static bool whisper_encode_internal(
|
|
| 1554 |
|
| 1555 |
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_scaled);
|
| 1556 |
|
| 1557 |
-
//struct ggml_tensor * V_trans =
|
| 1558 |
-
// ggml_permute(ctx0,
|
| 1559 |
-
// ggml_cpy(ctx0,
|
| 1560 |
-
// Vcur,
|
| 1561 |
-
// ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_head, n_ctx)),
|
| 1562 |
-
// 1, 2, 0, 3);
|
| 1563 |
-
|
| 1564 |
-
//struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
| 1565 |
-
|
| 1566 |
struct ggml_tensor * V =
|
| 1567 |
ggml_cpy(ctx0,
|
| 1568 |
ggml_permute(ctx0,
|
| 1569 |
ggml_reshape_3d(ctx0,
|
| 1570 |
Vcur,
|
| 1571 |
n_state/n_head, n_head, n_ctx),
|
| 1572 |
-
|
| 1573 |
-
ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head,
|
| 1574 |
);
|
| 1575 |
|
| 1576 |
-
struct ggml_tensor * KQV = ggml_mul_mat(ctx0,
|
| 1577 |
#endif
|
| 1578 |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
| 1579 |
|
|
|
|
| 102 |
#define WHISPER_PRINT_DEBUG(...)
|
| 103 |
#endif
|
| 104 |
|
| 105 |
+
//#define WHISPER_USE_FLASH_ATTN
|
| 106 |
//#define WHISPER_USE_FLASH_FF
|
| 107 |
#define WHISPER_MAX_DECODERS 16
|
| 108 |
|
|
|
|
| 224 |
static const size_t MB = 1ull*1024*1024;
|
| 225 |
|
| 226 |
static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
|
| 227 |
+
{ MODEL_TINY, 62ull*MB },
|
| 228 |
+
{ MODEL_BASE, 80ull*MB },
|
| 229 |
+
{ MODEL_SMALL, 120ull*MB },
|
| 230 |
+
{ MODEL_MEDIUM, 158ull*MB },
|
| 231 |
+
{ MODEL_LARGE, 198ull*MB },
|
| 232 |
};
|
| 233 |
|
| 234 |
static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
|
|
|
|
| 280 |
};
|
| 281 |
|
| 282 |
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
| 283 |
+
{ MODEL_TINY, 30ull*MB },
|
| 284 |
+
{ MODEL_BASE, 38ull*MB },
|
| 285 |
+
{ MODEL_SMALL, 56ull*MB },
|
| 286 |
+
{ MODEL_MEDIUM, 74ull*MB },
|
| 287 |
+
{ MODEL_LARGE, 94ull*MB },
|
| 288 |
};
|
| 289 |
|
| 290 |
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
|
|
|
| 1554 |
|
| 1555 |
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_scaled);
|
| 1556 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1557 |
struct ggml_tensor * V =
|
| 1558 |
ggml_cpy(ctx0,
|
| 1559 |
ggml_permute(ctx0,
|
| 1560 |
ggml_reshape_3d(ctx0,
|
| 1561 |
Vcur,
|
| 1562 |
n_state/n_head, n_head, n_ctx),
|
| 1563 |
+
1, 2, 0, 3),
|
| 1564 |
+
ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head)
|
| 1565 |
);
|
| 1566 |
|
| 1567 |
+
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
| 1568 |
#endif
|
| 1569 |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
| 1570 |
|