Spaces:
Running
Running
File size: 14,603 Bytes
c1bee18 c2e6d7e c1bee18 9a50492 c40f3d0 c1bee18 c40f3d0 c1bee18 9a50492 c1bee18 c40f3d0 c1bee18 8c7976b c1bee18 c2e6d7e c1bee18 c40f3d0 c1bee18 c2e6d7e c1bee18 c40f3d0 c1bee18 c40f3d0 c1bee18 c40f3d0 8c7976b c1bee18 c40f3d0 c2e6d7e c40f3d0 8c7976b c40f3d0 8c7976b c40f3d0 c1bee18 c40f3d0 8c7976b c40f3d0 c1bee18 c40f3d0 c1bee18 43a0ca3 8c7976b 43a0ca3 c2e6d7e 43a0ca3 c2e6d7e 43a0ca3 d8d1319 43a0ca3 1675f59 43a0ca3 8c7976b 43a0ca3 c2e6d7e 43a0ca3 8c7976b 43a0ca3 8c7976b 43a0ca3 8c7976b 43a0ca3 52fc803 43a0ca3 bc34cae 9a50492 52fc803 bc34cae 9a50492 43a0ca3 8c7976b 43a0ca3 52fc803 c1bee18 bc34cae 9a50492 52fc803 bc34cae 9a50492 c1bee18 8c7976b c1bee18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
"""
Image generation functionality handler for AI-Inferoxy AI Hub.
Handles text-to-image generation with multiple providers.
"""
import os
import gradio as gr
import time
import threading
from concurrent.futures import ThreadPoolExecutor, TimeoutError as FutureTimeoutError
from huggingface_hub import InferenceClient
from huggingface_hub.errors import HfHubHTTPError
from requests.exceptions import ConnectionError, Timeout, RequestException
from hf_token_utils import get_proxy_token, report_token_status
from utils import (
IMAGE_CONFIG,
validate_proxy_key,
format_error_message,
format_success_message,
)
# Timeout configuration for image generation
IMAGE_GENERATION_TIMEOUT = 300 # 5 minutes max for image generation
def validate_dimensions(width, height):
"""Validate that dimensions are divisible by 8 (required by most diffusion models)"""
if width % 8 != 0 or height % 8 != 0:
return False, "Width and height must be divisible by 8"
return True, ""
def generate_image(
prompt: str,
model_name: str,
provider: str,
negative_prompt: str = "",
width: int = IMAGE_CONFIG["width"],
height: int = IMAGE_CONFIG["height"],
num_inference_steps: int = IMAGE_CONFIG["num_inference_steps"],
guidance_scale: float = IMAGE_CONFIG["guidance_scale"],
seed: int = IMAGE_CONFIG["seed"],
client_name: str | None = None,
):
"""
Generate an image using the specified model and provider through AI-Inferoxy.
"""
# Validate proxy API key
is_valid, error_msg = validate_proxy_key()
if not is_valid:
return None, error_msg
proxy_api_key = os.getenv("PROXY_KEY")
token_id = None
try:
# Get token from AI-Inferoxy proxy server with timeout handling
print(f"π Image: Requesting token from proxy...")
token, token_id = get_proxy_token(api_key=proxy_api_key)
print(f"β
Image: Got token: {token_id}")
print(f"π¨ Image: Using model='{model_name}', provider='{provider}'")
# Create client with specified provider
client = InferenceClient(
provider=provider,
api_key=token
)
print(f"π Image: Client created, preparing generation params...")
# Prepare generation parameters
generation_params = {
"model": model_name,
"prompt": prompt,
"width": width,
"height": height,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
}
# Add optional parameters if provided
if negative_prompt:
generation_params["negative_prompt"] = negative_prompt
if seed != -1:
generation_params["seed"] = seed
print(f"π Image: Dimensions: {width}x{height}, steps: {num_inference_steps}, guidance: {guidance_scale}")
print(f"π‘ Image: Making generation request with {IMAGE_GENERATION_TIMEOUT}s timeout...")
# Create generation function for timeout handling
def generate_image_task():
return client.text_to_image(**generation_params)
# Execute with timeout using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(generate_image_task)
try:
# Generate image with timeout
image = future.result(timeout=IMAGE_GENERATION_TIMEOUT)
except FutureTimeoutError:
future.cancel() # Cancel the running task
raise TimeoutError(f"Image generation timed out after {IMAGE_GENERATION_TIMEOUT} seconds")
print(f"πΌοΈ Image: Generation completed! Image type: {type(image)}")
# Report successful token usage
if token_id:
report_token_status(token_id, "success", api_key=proxy_api_key, client_name=client_name)
return image, format_success_message("Image generated", f"using {model_name} on {provider}")
except ConnectionError as e:
# Handle proxy connection errors
error_msg = f"Cannot connect to AI-Inferoxy server: {str(e)}"
print(f"π Image connection error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
return None, format_error_message("Connection Error", "Unable to connect to the proxy server. Please check if it's running.")
except TimeoutError as e:
# Handle timeout errors
error_msg = f"Image generation timed out: {str(e)}"
print(f"β° Image timeout: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
return None, format_error_message("Timeout Error", f"Image generation took too long (>{IMAGE_GENERATION_TIMEOUT//60} minutes). Try reducing image size or steps.")
except HfHubHTTPError as e:
# Handle HuggingFace API errors
error_msg = str(e)
print(f"π€ Image HF error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
# Provide more user-friendly error messages
if "401" in error_msg:
return None, format_error_message("Authentication Error", "Invalid or expired API token. The proxy will provide a new token on retry.")
elif "402" in error_msg:
return None, format_error_message("Quota Exceeded", "API quota exceeded. The proxy will try alternative providers.")
elif "429" in error_msg:
return None, format_error_message("Rate Limited", "Too many requests. Please wait a moment and try again.")
elif "content policy" in error_msg.lower() or "safety" in error_msg.lower():
return None, format_error_message("Content Policy", "Image prompt was rejected by content policy. Please try a different prompt.")
else:
return None, format_error_message("HuggingFace API Error", error_msg)
except Exception as e:
# Handle all other errors
error_msg = str(e)
print(f"β Image unexpected error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
return None, format_error_message("Unexpected Error", f"An unexpected error occurred: {error_msg}")
def generate_image_to_image(
input_image,
prompt: str,
model_name: str,
provider: str,
negative_prompt: str = "",
num_inference_steps: int = IMAGE_CONFIG["num_inference_steps"],
guidance_scale: float = IMAGE_CONFIG["guidance_scale"],
seed: int = IMAGE_CONFIG["seed"],
client_name: str | None = None,
):
"""
Generate an image using image-to-image generation with the specified model and provider through AI-Inferoxy.
"""
# Validate proxy API key
is_valid, error_msg = validate_proxy_key()
if not is_valid:
return None, error_msg
proxy_api_key = os.getenv("PROXY_KEY")
token_id = None
try:
# Get token from AI-Inferoxy proxy server with timeout handling
print(f"π Image-to-Image: Requesting token from proxy...")
token, token_id = get_proxy_token(api_key=proxy_api_key)
print(f"β
Image-to-Image: Got token: {token_id}")
print(f"π¨ Image-to-Image: Using model='{model_name}', provider='{provider}'")
# Create client with specified provider
client = InferenceClient(
provider=provider,
api_key=token
)
print(f"π Image-to-Image: Client created, preparing generation params...")
# Prepare generation parameters
generation_params = {
"image": input_image,
"prompt": prompt,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
}
# Add optional parameters if provided
if negative_prompt:
generation_params["negative_prompt"] = negative_prompt
if seed != -1:
generation_params["seed"] = seed
print(f"π‘ Image-to-Image: Making generation request with {IMAGE_GENERATION_TIMEOUT}s timeout...")
# Create generation function for timeout handling
def generate_image_task():
return client.image_to_image(
model=model_name,
**generation_params
)
# Execute with timeout using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(generate_image_task)
try:
# Generate image with timeout
image = future.result(timeout=IMAGE_GENERATION_TIMEOUT)
except FutureTimeoutError:
future.cancel() # Cancel the running task
raise TimeoutError(f"Image-to-image generation timed out after {IMAGE_GENERATION_TIMEOUT} seconds")
print(f"πΌοΈ Image-to-Image: Generation completed! Image type: {type(image)}")
# Report successful token usage
if token_id:
report_token_status(token_id, "success", api_key=proxy_api_key, client_name=client_name)
return image, format_success_message("Image-to-image generated", f"using {model_name} on {provider}")
except ConnectionError as e:
# Handle proxy connection errors
error_msg = f"Cannot connect to AI-Inferoxy server: {str(e)}"
print(f"π Image-to-Image connection error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
return None, format_error_message("Connection Error", "Unable to connect to the proxy server. Please check if it's running.")
except TimeoutError as e:
# Handle timeout errors
error_msg = f"Image-to-image generation timed out: {str(e)}"
print(f"β° Image-to-Image timeout: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
return None, format_error_message("Timeout Error", f"Image-to-image generation took too long (>{IMAGE_GENERATION_TIMEOUT//60} minutes). Try reducing steps.")
except HfHubHTTPError as e:
# Handle HuggingFace API errors
error_msg = str(e)
print(f"π€ Image-to-Image HF error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key, client_name=client_name)
# Provide more user-friendly error messages
if "401" in error_msg:
return None, format_error_message("Authentication Error", "Invalid or expired API token. The proxy will provide a new token on retry.")
elif "402" in error_msg:
return None, format_error_message("Quota Exceeded", "API quota exceeded. The proxy will try alternative providers.")
elif "429" in error_msg:
return None, format_error_message("Rate Limited", "Too many requests. Please wait a moment and try again.")
elif "content policy" in error_msg.lower() or "safety" in error_msg.lower():
return None, format_error_message("Content Policy", "Image prompt was rejected by content policy. Please try a different prompt.")
else:
return None, format_error_message("HuggingFace API Error", error_msg)
except Exception as e:
# Handle all other errors
error_msg = str(e)
print(f"β Image-to-Image unexpected error: {error_msg}")
if token_id:
report_token_status(token_id, "error", error_msg, api_key=proxy_api_key)
return None, format_error_message("Unexpected Error", f"An unexpected error occurred: {error_msg}")
def handle_image_to_image_generation(input_image_val, prompt_val, model_val, provider_val, negative_prompt_val, steps_val, guidance_val, seed_val, hf_token: gr.OAuthToken = None, hf_profile: gr.OAuthProfile = None):
"""
Handle image-to-image generation request with validation.
"""
# Validate input image
if input_image_val is None:
return None, format_error_message("Validation Error", "Please upload an input image")
# Require sign-in via HF OAuth token
access_token = getattr(hf_token, "token", None) if hf_token is not None else None
username = getattr(hf_profile, "username", None) if hf_profile is not None else None
if not access_token:
return None, format_error_message("Access Required", "Please sign in with Hugging Face (sidebar Login button).")
# Generate image-to-image
return generate_image_to_image(
input_image=input_image_val,
prompt=prompt_val,
model_name=model_val,
provider=provider_val,
negative_prompt=negative_prompt_val,
num_inference_steps=steps_val,
guidance_scale=guidance_val,
seed=seed_val,
client_name=username
)
def handle_image_generation(prompt_val, model_val, provider_val, negative_prompt_val, width_val, height_val, steps_val, guidance_val, seed_val, hf_token: gr.OAuthToken = None, hf_profile: gr.OAuthProfile = None):
"""
Handle image generation request with validation.
"""
# Validate dimensions
is_valid, error_msg = validate_dimensions(width_val, height_val)
if not is_valid:
return None, format_error_message("Validation Error", error_msg)
# Require sign-in via HF OAuth token
access_token = getattr(hf_token, "token", None) if hf_token is not None else None
username = getattr(hf_profile, "username", None) if hf_profile is not None else None
if not access_token:
return None, format_error_message("Access Required", "Please sign in with Hugging Face (sidebar Login button).")
# Generate image
return generate_image(
prompt=prompt_val,
model_name=model_val,
provider=provider_val,
negative_prompt=negative_prompt_val,
width=width_val,
height=height_val,
num_inference_steps=steps_val,
guidance_scale=guidance_val,
seed=seed_val,
client_name=username
)
|