File size: 12,477 Bytes
67fe210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Cidadão.AI Backend API Data Structures

This document provides a comprehensive reference for all Pydantic models, request/response schemas, and data structures used in the Cidadão.AI backend API that a frontend application would need to implement.

## Table of Contents
1. [Chat API Models](#chat-api-models)
2. [WebSocket Models](#websocket-models)
3. [Investigation Models](#investigation-models)
4. [Authentication Models](#authentication-models)
5. [Agent Models](#agent-models)
6. [Pagination Models](#pagination-models)
7. [Error Response Format](#error-response-format)

---

## Chat API Models

### ChatRequest
```python
class ChatRequest(BaseModel):
    """Chat message request"""
    message: str  # min_length=1, max_length=1000
    session_id: Optional[str] = None
    context: Optional[Dict[str, Any]] = None
```

### ChatResponse
```python
class ChatResponse(BaseModel):
    """Chat message response"""
    session_id: str
    agent_id: str
    agent_name: str
    message: str
    confidence: float
    suggested_actions: Optional[List[str]] = None
    requires_input: Optional[Dict[str, str]] = None
    metadata: Dict[str, Any] = {}
```

### QuickAction
```python
class QuickAction(BaseModel):
    """Quick action suggestion"""
    id: str
    label: str
    icon: str
    action: str
```

### Stream Response Format (SSE)
```javascript
// Server-Sent Events format for /api/v1/chat/stream
data: {"type": "start", "timestamp": "2025-01-19T12:00:00Z"}
data: {"type": "detecting", "message": "Analisando sua mensagem..."}
data: {"type": "intent", "intent": "investigate", "confidence": 0.92}
data: {"type": "agent_selected", "agent_id": "zumbi", "agent_name": "Zumbi dos Palmares"}
data: {"type": "chunk", "content": "Olá! Sou Zumbi dos Palmares..."}
data: {"type": "complete", "suggested_actions": ["start_investigation", "learn_more"]}
data: {"type": "error", "message": "Erro ao processar mensagem"}
```

---

## WebSocket Models

### WebSocketMessage
```python
class WebSocketMessage(BaseModel):
    """WebSocket message structure"""
    type: str  # Message type
    data: Dict[str, Any] = {}
    timestamp: datetime = Field(default_factory=datetime.utcnow)
    id: str = Field(default_factory=lambda: str(uuid4()))
```

### WebSocket Connection URL
```
ws://localhost:8000/api/v1/ws/chat/{session_id}?token={jwt_token}
```

### WebSocket Message Types

#### Client to Server
```javascript
// Send chat message
{
    "type": "chat_message",
    "data": {
        "message": "Investigar contratos do Ministério da Saúde",
        "context": {}
    }
}

// Subscribe to investigation
{
    "type": "subscribe_investigation",
    "data": {
        "investigation_id": "123e4567-e89b-12d3-a456-426614174000"
    }
}

// Unsubscribe from investigation
{
    "type": "unsubscribe_investigation",
    "data": {
        "investigation_id": "123e4567-e89b-12d3-a456-426614174000"
    }
}

// Keep alive ping
{
    "type": "ping",
    "data": {}
}
```

#### Server to Client
```javascript
// Connection established
{
    "type": "connection",
    "data": {
        "status": "connected",
        "session_id": "abc123",
        "message": "Conectado ao Cidadão.AI em tempo real"
    },
    "timestamp": "2025-01-19T12:00:00Z",
    "id": "msg123"
}

// Agent response
{
    "type": "agent_response",
    "data": {
        "agent_id": "zumbi",
        "agent_name": "Zumbi dos Palmares",
        "message": "Encontrei 15 anomalias nos contratos...",
        "confidence": 0.92,
        "metadata": {
            "processing_time_ms": 1250,
            "anomalies_found": 15
        }
    }
}

// Investigation update
{
    "type": "investigation_update",
    "data": {
        "investigation_id": "123e4567",
        "status": "processing",
        "progress": 0.75,
        "current_phase": "analyzing_patterns",
        "anomalies_detected": 12
    }
}

// Error message
{
    "type": "error",
    "data": {
        "code": "PROCESSING_ERROR",
        "message": "Failed to process request",
        "details": {}
    }
}

// Pong response
{
    "type": "pong",
    "data": {}
}
```

---

## Investigation Models

### InvestigationRequest
```python
class InvestigationRequest(BaseModel):
    """Request model for starting an investigation"""
    query: str  # Investigation query or focus area
    data_source: str = "contracts"  # One of: contracts, expenses, agreements, biddings, servants
    filters: Dict[str, Any] = {}
    anomaly_types: List[str] = ["price", "vendor", "temporal", "payment"]
    include_explanations: bool = True
    stream_results: bool = False
```

### InvestigationResponse
```python
class InvestigationResponse(BaseModel):
    """Response model for investigation results"""
    investigation_id: str
    status: str
    query: str
    data_source: str
    started_at: datetime
    completed_at: Optional[datetime] = None
    anomalies_found: int
    total_records_analyzed: int
    results: List[Dict[str, Any]]
    summary: str
    confidence_score: float
    processing_time: float
```

### AnomalyResult
```python
class AnomalyResult(BaseModel):
    """Individual anomaly result"""
    anomaly_id: str
    type: str  # price, vendor, temporal, payment, duplicate, pattern
    severity: str  # low, medium, high, critical
    confidence: float
    description: str
    explanation: str
    affected_records: List[Dict[str, Any]]
    suggested_actions: List[str]
    metadata: Dict[str, Any]
```

### InvestigationStatus
```python
class InvestigationStatus(BaseModel):
    """Investigation status response"""
    investigation_id: str
    status: str  # started, processing, completed, failed
    progress: float  # 0.0 to 1.0
    current_phase: str
    records_processed: int
    anomalies_detected: int
    estimated_completion: Optional[datetime] = None
```

---

## Authentication Models

### LoginRequest
```python
class LoginRequest(BaseModel):
    email: str  # EmailStr
    password: str
```

### LoginResponse
```python
class LoginResponse(BaseModel):
    access_token: str
    refresh_token: str
    token_type: str = "bearer"
    expires_in: int  # seconds
    user: {
        "id": str,
        "email": str,
        "name": str,
        "role": str,
        "is_active": bool
    }
```

### RefreshRequest
```python
class RefreshRequest(BaseModel):
    refresh_token: str
```

### RefreshResponse
```python
class RefreshResponse(BaseModel):
    access_token: str
    token_type: str = "bearer"
    expires_in: int  # seconds
```

### RegisterRequest
```python
class RegisterRequest(BaseModel):
    email: str  # EmailStr
    password: str
    name: str
    role: Optional[str] = "analyst"
```

### UserResponse
```python
class UserResponse(BaseModel):
    id: str
    email: str
    name: str
    role: str
    is_active: bool
    created_at: datetime
    last_login: Optional[datetime] = None
```

### Authorization Header
```
Authorization: Bearer {access_token}
```

---

## Agent Models

### AgentMessage
```python
class AgentMessage(BaseModel):
    """Message passed between agents"""
    sender: str  # Agent that sent the message
    recipient: str  # Agent that should receive the message
    action: str  # Action to perform
    payload: Dict[str, Any] = {}
    context: Dict[str, Any] = {}
    timestamp: datetime
    message_id: str
    requires_response: bool = True
```

### AgentResponse
```python
class AgentResponse(BaseModel):
    """Response from an agent"""
    agent_name: str
    status: str  # IDLE, PROCESSING, COMPLETED, ERROR, REFLECTING
    result: Optional[Any] = None
    error: Optional[str] = None
    metadata: Dict[str, Any] = {}
    timestamp: datetime
    processing_time_ms: Optional[float] = None
```

### Available Agents
```javascript
const AGENTS = {
    abaporu: { name: "Abaporu", role: "Orquestrador" },
    zumbi: { name: "Zumbi dos Palmares", role: "Investigador" },
    anita: { name: "Anita Garibaldi", role: "Analista" },
    tiradentes: { name: "Tiradentes", role: "Relator" },
    machado: { name: "Machado de Assis", role: "Textual" },
    dandara: { name: "Dandara", role: "Justiça Social" },
    drummond: { name: "Carlos Drummond de Andrade", role: "Comunicação" }
}
```

---

## Pagination Models

### CursorPaginationRequest
```python
class CursorPaginationRequest(BaseModel):
    """Request parameters for cursor pagination"""
    cursor: Optional[str] = None  # Base64 encoded cursor
    limit: int = 20  # min=1, max=100
    direction: str = "next"  # next or prev
```

### CursorPaginationResponse
```python
class CursorPaginationResponse(BaseModel):
    """Response with cursor pagination metadata"""
    items: List[T]
    next_cursor: Optional[str] = None
    prev_cursor: Optional[str] = None
    has_more: bool = False
    total_items: Optional[int] = None
    metadata: Dict[str, Any] = {}
```

### Cursor Format
```javascript
// Cursor is base64 encoded JSON
{
    "t": "2025-01-19T12:00:00Z",  // timestamp
    "i": "123e4567",               // id
    "d": "next"                    // direction
}
```

---

## Error Response Format

All API errors follow this standardized format:

### HTTP Exception Response
```javascript
{
    "status": "error",
    "status_code": 400,  // HTTP status code
    "error": {
        "error": "HTTPException",
        "message": "Invalid request data",
        "details": {}
    }
}
```

### Application Error Response
```javascript
{
    "status": "error",
    "status_code": 500,
    "error": {
        "error": "InternalServerError",
        "message": "An unexpected error occurred",
        "details": {
            "error_type": "DatabaseConnectionError"  // Only in development
        }
    }
}
```

### Custom Exception Format (CidadaoAIError)
```javascript
{
    "error": "AgentExecutionError",  // Error code
    "message": "Agent failed to execute task",
    "details": {
        "agent": "zumbi",
        "action": "investigate",
        "error": "Connection timeout"
    }
}
```

---

## Common HTTP Status Codes

- `200 OK` - Success
- `201 Created` - Resource created
- `400 Bad Request` - Invalid request data
- `401 Unauthorized` - Missing or invalid authentication
- `403 Forbidden` - Insufficient permissions
- `404 Not Found` - Resource not found
- `422 Unprocessable Entity` - Validation error
- `429 Too Many Requests` - Rate limit exceeded
- `500 Internal Server Error` - Server error

---

## API Base URLs

### Development
```
http://localhost:8000/api/v1
ws://localhost:8000/api/v1/ws
```

### Production (HuggingFace Spaces)
```
https://neural-thinker-cidadao-ai-backend.hf.space/api/v1
wss://neural-thinker-cidadao-ai-backend.hf.space/api/v1/ws
```

---

## TypeScript Interface Examples

For TypeScript frontend implementations, here are the equivalent interfaces:

```typescript
// Chat interfaces
interface ChatRequest {
    message: string;
    session_id?: string;
    context?: Record<string, any>;
}

interface ChatResponse {
    session_id: string;
    agent_id: string;
    agent_name: string;
    message: string;
    confidence: number;
    suggested_actions?: string[];
    requires_input?: Record<string, string>;
    metadata: Record<string, any>;
}

// WebSocket interfaces
interface WebSocketMessage {
    type: string;
    data: Record<string, any>;
    timestamp: string;
    id: string;
}

// Investigation interfaces
interface InvestigationRequest {
    query: string;
    data_source?: 'contracts' | 'expenses' | 'agreements' | 'biddings' | 'servants';
    filters?: Record<string, any>;
    anomaly_types?: string[];
    include_explanations?: boolean;
    stream_results?: boolean;
}

// Error interface
interface ErrorResponse {
    status: 'error';
    status_code: number;
    error: {
        error: string;
        message: string;
        details: Record<string, any>;
    };
}
```

---

## Notes for Frontend Developers

1. **Authentication**: All authenticated endpoints require the `Authorization: Bearer {token}` header
2. **WebSocket**: Connect with JWT token as query parameter for authentication
3. **Pagination**: Use cursor-based pagination for chat history and large datasets
4. **Error Handling**: Always check for error responses and handle appropriately
5. **SSE Streaming**: For real-time responses, use EventSource API with `/api/v1/chat/stream`
6. **Rate Limiting**: Respect rate limits indicated in response headers
7. **Timestamp Format**: All timestamps are in ISO 8601 format (UTC)
8. **IDs**: All entity IDs are UUIDs in string format