File size: 17,938 Bytes
dd1b2de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
"""Unit tests for service layer components."""
import pytest
from unittest.mock import MagicMock, patch, AsyncMock
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
from src.services.analysis_service import (
AnalysisService,
ContractAnalysis,
SpendingAnalysis,
VendorAnalysis,
RiskAssessment
)
from src.services.data_service import (
DataService,
DataSource,
DataFilter,
DataAggregation,
DataQuality
)
from src.services.notification_service import (
NotificationService,
NotificationType,
NotificationChannel,
NotificationPriority,
NotificationTemplate
)
from src.services.investigation_service import (
InvestigationService,
InvestigationRequest,
InvestigationPlan,
InvestigationResult
)
class TestAnalysisService:
"""Test analysis service functionality."""
@pytest.fixture
def analysis_service(self):
"""Create analysis service instance."""
return AnalysisService()
@pytest.fixture
def sample_contracts(self):
"""Create sample contract data."""
return pd.DataFrame({
'contract_id': [f'CTR-{i:03d}' for i in range(100)],
'value': np.random.lognormal(11, 1.5, 100), # Log-normal distribution
'vendor_id': np.random.choice(['V001', 'V002', 'V003', 'V004', 'V005'], 100),
'date': pd.date_range('2024-01-01', periods=100, freq='D'),
'category': np.random.choice(['IT', 'Medical', 'Construction'], 100),
'duration_days': np.random.randint(30, 365, 100)
})
@pytest.mark.asyncio
async def test_contract_analysis(self, analysis_service, sample_contracts):
"""Test contract analysis functionality."""
analysis = ContractAnalysis()
result = await analysis.analyze_contracts(sample_contracts)
assert result is not None
assert 'summary_stats' in result
assert 'anomalies' in result
assert 'risk_score' in result
# Check summary statistics
stats = result['summary_stats']
assert stats['total_contracts'] == 100
assert stats['total_value'] > 0
assert stats['avg_value'] > 0
assert stats['median_value'] > 0
@pytest.mark.asyncio
async def test_anomaly_detection_in_contracts(self, analysis_service, sample_contracts):
"""Test anomaly detection in contract analysis."""
# Add anomalous contracts
anomalous = sample_contracts.copy()
anomalous.loc[0, 'value'] = anomalous['value'].mean() * 10 # 10x average
anomalous.loc[1, 'duration_days'] = 1 # Very short duration
analysis = ContractAnalysis()
result = await analysis.analyze_contracts(anomalous)
anomalies = result['anomalies']
assert len(anomalies) >= 2
# Check anomaly details
assert any(a['type'] == 'price_anomaly' for a in anomalies)
assert any(a['type'] == 'duration_anomaly' for a in anomalies)
@pytest.mark.asyncio
async def test_spending_pattern_analysis(self, analysis_service):
"""Test spending pattern analysis."""
# Create spending data with patterns
dates = pd.date_range('2024-01-01', '2024-12-31', freq='D')
spending_data = pd.DataFrame({
'date': dates,
'amount': [
100000 * (1 + 0.5 * np.sin(2 * np.pi * i / 30)) # Monthly pattern
+ 50000 * (1 if d.month == 12 else 0) # Year-end spike
+ np.random.normal(0, 10000) # Noise
for i, d in enumerate(dates)
],
'department': np.random.choice(['Health', 'Education', 'Infrastructure'], len(dates))
})
analysis = SpendingAnalysis()
patterns = await analysis.detect_patterns(spending_data)
assert 'seasonal_patterns' in patterns
assert 'trend' in patterns
assert 'anomalous_periods' in patterns
# Should detect year-end spike
anomalous = patterns['anomalous_periods']
assert any(p['period'].month == 12 for p in anomalous)
@pytest.mark.asyncio
async def test_vendor_concentration_analysis(self, analysis_service, sample_contracts):
"""Test vendor concentration analysis."""
# Create concentrated vendor scenario
concentrated = sample_contracts.copy()
concentrated.loc[:70, 'vendor_id'] = 'V001' # 70% to one vendor
analysis = VendorAnalysis()
result = await analysis.analyze_concentration(concentrated)
assert 'concentration_index' in result
assert 'top_vendors' in result
assert 'risk_level' in result
# Should detect high concentration
assert result['concentration_index'] > 0.7
assert result['risk_level'] == 'high'
assert result['top_vendors'][0]['vendor_id'] == 'V001'
assert result['top_vendors'][0]['percentage'] > 0.7
@pytest.mark.asyncio
async def test_risk_assessment(self, analysis_service, sample_contracts):
"""Test comprehensive risk assessment."""
assessment = RiskAssessment()
# Add risk factors
risk_contracts = sample_contracts.copy()
risk_contracts.loc[0, 'value'] = risk_contracts['value'].mean() * 20
risk_contracts.loc[:60, 'vendor_id'] = 'V001' # Vendor concentration
risk_score = await assessment.calculate_risk(
contracts=risk_contracts,
historical_data=sample_contracts
)
assert isinstance(risk_score, dict)
assert 'overall_risk' in risk_score
assert 'risk_factors' in risk_score
assert 'recommendations' in risk_score
assert risk_score['overall_risk'] > 0.7 # High risk
assert len(risk_score['risk_factors']) >= 2
class TestDataService:
"""Test data service functionality."""
@pytest.fixture
def data_service(self):
"""Create data service instance."""
return DataService()
@pytest.mark.asyncio
async def test_data_source_registration(self, data_service):
"""Test registering data sources."""
source = DataSource(
id="transparency_api",
name="Portal da Transparência",
type="api",
config={
"base_url": "https://api.portaltransparencia.gov.br",
"auth_required": True
}
)
await data_service.register_source(source)
# Verify registration
registered = await data_service.get_source("transparency_api")
assert registered is not None
assert registered.name == "Portal da Transparência"
@pytest.mark.asyncio
async def test_data_filtering(self, data_service):
"""Test data filtering capabilities."""
# Sample data
data = pd.DataFrame({
'entity': ['MinHealth', 'MinEdu', 'MinHealth', 'MinInfra'],
'value': [100000, 200000, 150000, 300000],
'date': pd.to_datetime(['2024-01-01', '2024-02-01', '2024-03-01', '2024-04-01']),
'status': ['active', 'active', 'cancelled', 'active']
})
# Apply filters
filters = DataFilter(
entity="MinHealth",
status="active",
date_range=("2024-01-01", "2024-12-31")
)
filtered = await data_service.apply_filters(data, filters)
assert len(filtered) == 1
assert filtered.iloc[0]['entity'] == 'MinHealth'
assert filtered.iloc[0]['status'] == 'active'
@pytest.mark.asyncio
async def test_data_aggregation(self, data_service):
"""Test data aggregation functionality."""
data = pd.DataFrame({
'department': ['Health', 'Health', 'Education', 'Education'],
'category': ['IT', 'Medical', 'IT', 'Books'],
'amount': [100000, 200000, 150000, 50000]
})
aggregation = DataAggregation(
group_by=['department'],
aggregations={
'amount': ['sum', 'mean', 'count'],
}
)
result = await data_service.aggregate_data(data, aggregation)
assert len(result) == 2 # Two departments
assert 'amount_sum' in result.columns
assert 'amount_mean' in result.columns
assert 'amount_count' in result.columns
health_row = result[result['department'] == 'Health'].iloc[0]
assert health_row['amount_sum'] == 300000
assert health_row['amount_count'] == 2
@pytest.mark.asyncio
async def test_data_quality_assessment(self, data_service):
"""Test data quality assessment."""
# Create data with quality issues
data = pd.DataFrame({
'id': [1, 2, 3, None, 5], # Missing value
'value': [100, 200, -50, 300, 1e9], # Negative and outlier
'date': ['2024-01-01', '2024-02-01', 'invalid', '2024-04-01', '2024-05-01'],
'duplicate': [1, 1, 2, 3, 4] # Duplicate values
})
quality = DataQuality()
assessment = await quality.assess_quality(data)
assert 'completeness' in assessment
assert 'validity' in assessment
assert 'consistency' in assessment
assert 'issues' in assessment
# Should detect issues
assert assessment['completeness'] < 1.0 # Missing values
assert len(assessment['issues']) > 0
assert any(issue['type'] == 'missing_value' for issue in assessment['issues'])
assert any(issue['type'] == 'invalid_value' for issue in assessment['issues'])
class TestNotificationService:
"""Test notification service functionality."""
@pytest.fixture
def notification_service(self):
"""Create notification service instance."""
return NotificationService()
@pytest.mark.asyncio
async def test_send_notification(self, notification_service):
"""Test sending notifications."""
# Mock notification channels
with patch.object(notification_service, '_send_email') as mock_email:
mock_email.return_value = True
result = await notification_service.send_notification(
type=NotificationType.ANOMALY_DETECTED,
channel=NotificationChannel.EMAIL,
recipient="[email protected]",
data={
"anomaly_count": 5,
"severity": "high",
"investigation_id": "inv-123"
}
)
assert result is True
mock_email.assert_called_once()
@pytest.mark.asyncio
async def test_notification_templates(self, notification_service):
"""Test notification template rendering."""
template = NotificationTemplate(
id="anomaly_alert",
type=NotificationType.ANOMALY_DETECTED,
subject="🚨 {anomaly_count} Anomalies Detected",
body="""
Investigation: {investigation_id}
Severity: {severity}
Anomalies Found: {anomaly_count}
Please review the findings immediately.
"""
)
rendered = await notification_service.render_template(
template,
data={
"anomaly_count": 3,
"severity": "medium",
"investigation_id": "inv-456"
}
)
assert "3 Anomalies Detected" in rendered['subject']
assert "inv-456" in rendered['body']
assert "medium" in rendered['body']
@pytest.mark.asyncio
async def test_notification_priority_queue(self, notification_service):
"""Test notification priority queuing."""
# Queue notifications with different priorities
notifications = [
{
"type": NotificationType.SYSTEM_ALERT,
"priority": NotificationPriority.LOW,
"data": {"message": "Low priority"}
},
{
"type": NotificationType.ANOMALY_DETECTED,
"priority": NotificationPriority.CRITICAL,
"data": {"message": "Critical anomaly"}
},
{
"type": NotificationType.REPORT_READY,
"priority": NotificationPriority.MEDIUM,
"data": {"message": "Report ready"}
}
]
for notif in notifications:
await notification_service.queue_notification(**notif)
# Process queue - critical should be first
processed = await notification_service.process_queue()
assert processed[0]['priority'] == NotificationPriority.CRITICAL
assert processed[-1]['priority'] == NotificationPriority.LOW
@pytest.mark.asyncio
async def test_notification_rate_limiting(self, notification_service):
"""Test notification rate limiting."""
recipient = "[email protected]"
# Send multiple notifications
for i in range(10):
await notification_service.send_notification(
type=NotificationType.ANOMALY_DETECTED,
channel=NotificationChannel.EMAIL,
recipient=recipient,
data={"count": i}
)
# Check rate limit
stats = await notification_service.get_recipient_stats(recipient)
assert stats['notifications_sent'] <= notification_service.rate_limit_per_hour
class TestInvestigationService:
"""Test investigation service functionality."""
@pytest.fixture
def investigation_service(self):
"""Create investigation service instance."""
return InvestigationService()
@pytest.mark.asyncio
async def test_create_investigation_plan(self, investigation_service):
"""Test creating investigation plan."""
request = InvestigationRequest(
id="req-123",
query="Analyze health ministry contracts for overpricing",
parameters={
"entity": "Ministry of Health",
"period": "2024",
"focus": "price_anomalies"
}
)
plan = await investigation_service.create_plan(request)
assert isinstance(plan, InvestigationPlan)
assert len(plan.steps) > 0
assert any(step.agent_type == "investigator" for step in plan.steps)
assert any(step.agent_type == "analyst" for step in plan.steps)
assert plan.estimated_duration > 0
@pytest.mark.asyncio
async def test_execute_investigation(self, investigation_service):
"""Test investigation execution."""
# Mock agent responses
with patch('src.agents.abaporu.MasterAgent.execute') as mock_execute:
mock_execute.return_value = AsyncMock(
status="completed",
result={
"anomalies": [
{"type": "price", "severity": 0.8},
{"type": "vendor", "severity": 0.6}
],
"summary": "Found 2 significant anomalies"
}
)
request = InvestigationRequest(
id="inv-exec-123",
query="Test investigation",
parameters={}
)
result = await investigation_service.execute_investigation(request)
assert isinstance(result, InvestigationResult)
assert result.status == "completed"
assert len(result.findings['anomalies']) == 2
assert result.confidence_score > 0
@pytest.mark.asyncio
async def test_investigation_progress_tracking(self, investigation_service):
"""Test tracking investigation progress."""
investigation_id = "track-123"
# Update progress
await investigation_service.update_progress(
investigation_id,
step="data_collection",
progress=0.5,
message="Collected 50% of contract data"
)
await investigation_service.update_progress(
investigation_id,
step="analysis",
progress=0.3,
message="Analyzing patterns"
)
# Get overall progress
progress = await investigation_service.get_progress(investigation_id)
assert progress['overall_progress'] > 0
assert 'data_collection' in progress['steps']
assert progress['steps']['data_collection']['progress'] == 0.5
@pytest.mark.asyncio
async def test_investigation_caching(self, investigation_service):
"""Test investigation result caching."""
request = InvestigationRequest(
id="cache-123",
query="Cached investigation",
parameters={"entity": "test", "use_cache": True}
)
# First execution
with patch('src.agents.abaporu.MasterAgent.execute') as mock_execute:
mock_execute.return_value = AsyncMock(
status="completed",
result={"data": "first_execution"}
)
result1 = await investigation_service.execute_investigation(request)
assert mock_execute.call_count == 1
# Second execution should use cache
result2 = await investigation_service.execute_investigation(request)
assert result1.findings == result2.findings
assert result2.from_cache is True |