File size: 7,059 Bytes
feba703 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Contributing to Cidadão.AI
Thank you for your interest in contributing to Cidadão.AI! This guide will help you understand how to contribute effectively to our multi-agent transparency analysis system.
## 🤖 Agent Implementation Guide
### Current Status
- **8/17 agents fully implemented** (47%)
- **7 agents partially implemented** (need completion)
- **1 agent missing** (needs creation)
### How to Implement a New Agent
#### 1. **Choose an Agent to Implement**
Priority order for pending agents:
1. **José Bonifácio** (`bonifacio.py`) - Structure ready, implement logic
2. **Carlos Drummond** (`drummond.py`) - Design complete, implement channels
3. **Maria Quitéria** (`maria_quiteria.py`) - Security auditor
4. **Oscar Niemeyer** (`niemeyer.py`) - Data visualization
5. Others: Ceuci, Obaluaiê, Lampião
#### 2. **Follow the Standard Pattern**
All agents must inherit from `ReflectiveAgent`:
```python
from typing import List, Dict, Any
from src.agents.deodoro import ReflectiveAgent, AgentMessage, AgentResponse
class YourAgent(ReflectiveAgent):
"""
Brief description of the agent's purpose.
This agent specializes in [specific domain].
"""
def __init__(self):
super().__init__(
agent_id="your_agent_id",
name="Full Agent Name",
description="Detailed description of capabilities",
capabilities=[
"capability_1",
"capability_2",
# List all specific capabilities
]
)
async def process(self, message: AgentMessage) -> AgentResponse:
"""
Main processing logic for the agent.
Args:
message: The agent message to process
Returns:
AgentResponse with results
"""
context = message.context
content = message.content
# Your implementation logic here
results = await self._analyze_data(content)
# Use reflection if quality is low
if results.get("confidence", 0) < 0.8:
return await self.reflect_and_retry(message, results)
return AgentResponse(
agent_id=self.agent_id,
message_id=message.message_id,
content=results,
metadata={
"processing_time": time.time() - start_time,
"confidence": results.get("confidence")
}
)
```
#### 3. **Required Methods**
Each agent must implement:
- `__init__()`: Initialize with unique ID and capabilities
- `process()`: Main async processing method
- Helper methods for specific analyses
#### 4. **Agent Capabilities Examples**
Reference our fully implemented agents:
**Anomaly Detection (Zumbi)**:
- Statistical analysis (Z-score)
- Spectral analysis (FFT)
- Pattern recognition
- Duplicate detection
**Analysis (Anita)**:
- Trend analysis
- Behavioral patterns
- Efficiency metrics
- Seasonal patterns
**Reporting (Tiradentes)**:
- Multi-format generation
- Audience adaptation
- Risk prioritization
- Multilingual support
#### 5. **Testing Requirements**
Create comprehensive tests in `tests/unit/test_agents/`:
```python
import pytest
from src.agents.your_agent import YourAgent
class TestYourAgent:
@pytest.fixture
def agent(self):
return YourAgent()
@pytest.fixture
def sample_message(self):
return AgentMessage(
content={"data": "test"},
sender="test",
context=AgentContext(investigation_id="test-123")
)
async def test_process_valid_data(self, agent, sample_message):
response = await agent.process(sample_message)
assert response.status == "success"
assert "results" in response.content
async def test_handles_invalid_data(self, agent):
# Test error handling
pass
```
#### 6. **Documentation Requirements**
- Add docstrings to all methods
- Update `docs/AGENT_STATUS_2025.md` with implementation status
- Include usage examples in docstrings
- Document any external dependencies
### Code Style Guidelines
1. **Python Style**:
- Follow PEP 8
- Use type hints
- Black formatter (88 char line length)
- isort for imports
2. **Async Best Practices**:
- Use `async`/`await` for all I/O operations
- Proper exception handling with `try`/`except`
- Timeout handling for external calls
3. **Security**:
- Validate all inputs
- No hardcoded secrets
- Use `settings` from `src.core.config`
### Commit Message Format
Follow [Conventional Commits](https://www.conventionalcommits.org/):
```
feat(agents): implement José Bonifácio policy analysis agent
- Add policy evaluation metrics
- Implement SROI calculations
- Add comprehensive test coverage
```
Types:
- `feat`: New feature
- `fix`: Bug fix
- `test`: Tests only
- `docs`: Documentation only
- `refactor`: Code restructuring
- `style`: Formatting changes
- `chore`: Maintenance
### Testing
Run tests before submitting:
```bash
# All tests
make test
# Specific agent tests
pytest tests/unit/test_agents/test_your_agent.py -v
# With coverage
make test-coverage
```
Minimum requirements:
- 80% test coverage for new code
- All tests passing
- No linting errors
### Pull Request Process
1. Fork the repository
2. Create a feature branch: `git checkout -b feat/implement-agent-name`
3. Make your changes following the guidelines
4. Run all checks: `make check`
5. Commit with clear messages
6. Push to your fork
7. Create a Pull Request with:
- Clear description of changes
- Reference to any related issues
- Test results screenshot
- Documentation updates
### Getting Help
- Check existing agent implementations for examples
- Review `src/agents/deodoro.py` for base classes
- Ask questions in GitHub Issues
- Tag maintainers for complex questions
## 🚀 Other Contributions
### Bug Fixes
1. Create an issue describing the bug
2. Reference the issue in your PR
3. Include tests that verify the fix
### Documentation
- Fix typos and clarify explanations
- Add examples and use cases
- Translate documentation
### Performance Improvements
- Profile before optimizing
- Benchmark improvements
- Document performance gains
## 📋 Development Setup
```bash
# Clone the repo
git clone https://github.com/your-fork/cidadao.ai-backend
cd cidadao.ai-backend
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/Mac
# Install dev dependencies
make install-dev
# Run tests
make test
```
## 🤝 Code of Conduct
- Be respectful and inclusive
- Welcome newcomers
- Focus on constructive feedback
- Celebrate Brazilian culture and diversity
## 📄 License
By contributing, you agree that your contributions will be licensed under the MIT License.
---
**Questions?** Open an issue with the `question` label.
**Ready to contribute?** Check our [good first issue](https://github.com/anderson-ufrj/cidadao.ai-backend/labels/good%20first%20issue) labels! |