File size: 20,617 Bytes
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# ๐Ÿค– Cidadรฃo.AI Multi-Agent System

## ๐Ÿ“‹ Overview

The **Multi-Agent System** is the cognitive core of Cidadรฃo.AI, featuring **17 specialized AI agents** with Brazilian cultural identities. Each agent embodies specific expertise in transparency analysis, from anomaly detection to policy evaluation, working together through sophisticated **coordination patterns** and **self-reflection mechanisms**.

## ๐Ÿ—๏ธ Architecture

```
src/agents/
โ”œโ”€โ”€ deodoro.py          # Base agent framework & communication protocols  
โ”œโ”€โ”€ abaporu.py          # Master agent - investigation orchestration
โ”œโ”€โ”€ zumbi.py            # Investigator - anomaly detection specialist
โ”œโ”€โ”€ anita.py            # Analyst - pattern analysis expert  
โ”œโ”€โ”€ tiradentes.py       # Reporter - natural language generation
โ”œโ”€โ”€ ayrton_senna.py     # Semantic router - intelligent query routing
โ”œโ”€โ”€ nana.py             # Memory agent - multi-layer memory management
โ”œโ”€โ”€ machado.py          # Textual analyst - document processing
โ”œโ”€โ”€ bonifacio.py        # Policy analyst - institutional effectiveness
โ”œโ”€โ”€ dandara.py          # Social justice - equity monitoring
โ”œโ”€โ”€ drummond.py         # Communication - multi-channel messaging
โ”œโ”€โ”€ maria_quiteria.py   # Security auditor - system protection
โ”œโ”€โ”€ niemeyer.py         # Visualization - data architecture
โ”œโ”€โ”€ ceuci.py            # ETL specialist - data processing
โ”œโ”€โ”€ obaluaie.py         # Health monitor - wellness tracking
โ””โ”€โ”€ lampiao.py          # Regional analyst - territorial insights
```

## ๐Ÿง  Agent Coordination Patterns

### Master-Agent Hierarchy
```python
# Central coordination with adaptive strategies
MasterAgent (Abaporu)
โ”œโ”€โ”€ coordinates โ†’ InvestigatorAgent (Zumbi)
โ”œโ”€โ”€ coordinates โ†’ AnalystAgent (Anita)  
โ”œโ”€โ”€ coordinates โ†’ ReporterAgent (Tiradentes)
โ”œโ”€โ”€ coordinates โ†’ SemanticRouter (Ayrton Senna)
โ””โ”€โ”€ coordinates โ†’ ContextMemoryAgent (Nanรฃ)

# Self-reflection loops with quality thresholds
Reflection Loop:
1. Execute investigation
2. Assess quality (threshold: 0.8)
3. If quality < threshold: reflect & adapt
4. Max 3 reflection iterations
5. Return optimized results
```

### Communication Architecture
```python
# Structured message passing between agents
AgentMessage:
- sender: str               # Agent identifier
- recipient: str            # Target agent
- action: str              # Action to perform
- payload: Dict[str, Any]  # Message data
- context: AgentContext    # Shared investigation context
- requires_response: bool  # Synchronous vs async

AgentResponse:
- agent_name: str          # Responding agent
- status: AgentStatus      # Success/failure/in_progress
- result: Any              # Actual result data
- error: Optional[str]     # Error details if failed
- metadata: Dict           # Processing metrics
```

## ๐ŸŽญ Agent Profiles

### 1. **Abaporu** - Master Agent (Orchestrator)
**Cultural Reference**: Abaporu painting by Tarsila do Amaral - symbol of Brazilian Modernism

```python
# Core capabilities
MasterAgent:
- Investigation planning with adaptive strategies
- Agent registry and dependency management  
- Self-reflection with configurable thresholds
- Quality assessment and strategy adaptation
- Comprehensive result synthesis

# Advanced features
- Reflection threshold: 0.8 (configurable)
- Max reflection loops: 3 iterations
- Adaptive investigation strategies based on results
- Agent capability matching and load balancing
```

**Key Methods:**
- `plan_investigation()` - Creates adaptive investigation strategies
- `coordinate_agents()` - Orchestrates multi-agent workflows
- `reflect_on_results()` - Self-assessment and strategy adaptation
- `synthesize_findings()` - Combines results from multiple agents

### 2. **Zumbi** - Investigator Agent (Anomaly Detective)
**Cultural Reference**: Zumbi dos Palmares - freedom fighter and resistance leader

```python
# Anomaly detection capabilities
InvestigatorAgent:
- Price anomalies: 2.5 standard deviation threshold
- Vendor concentration: 70% concentration trigger
- Temporal patterns: Fourier transform analysis
- Duplicate detection: 85% similarity threshold
- Payment irregularities: Statistical outlier detection

# Advanced analytics
- Spectral analysis using FFT for periodic patterns
- Multi-dimensional anomaly scoring
- Machine learning-based pattern recognition
- Cryptographic evidence verification
```

**Anomaly Types:**
- `PRICE_ANOMALY` - Statistical price outliers
- `VENDOR_CONCENTRATION` - Monopolistic vendor patterns
- `TEMPORAL_SUSPICION` - Suspicious timing patterns  
- `DUPLICATE_CONTRACT` - Contract similarity detection
- `PAYMENT_IRREGULARITY` - Payment pattern analysis

### 3. **Anita Garibaldi** - Analyst Agent (Pattern Expert)
**Cultural Reference**: Anita Garibaldi - revolutionary and feminist pioneer

```python
# Pattern analysis capabilities
AnalystAgent:
- Spending trend analysis with linear regression
- Organizational behavior pattern comparison
- Vendor behavior analysis across organizations
- Seasonal pattern detection (end-of-year analysis)
- Cross-spectral analysis between entities
- Efficiency metrics calculation

# Advanced features
- Time series decomposition (trend, seasonal, residual)
- Cross-correlation analysis between organizations
- Spectral density estimation for periodic spending
- Multi-variate regression for complex patterns
```

**Analysis Types:**
- `SPENDING_TRENDS` - Linear regression trend analysis
- `VENDOR_PATTERNS` - Vendor behavior profiling
- `ORGANIZATIONAL_BEHAVIOR` - Cross-org comparison
- `SEASONAL_ANALYSIS` - Seasonal spending patterns
- `EFFICIENCY_METRICS` - Performance indicators

### 4. **Tiradentes** - Reporter Agent (Communication Expert)
**Cultural Reference**: Tiradentes - independence martyr and symbol of justice

```python
# Report generation capabilities
ReporterAgent:
- Multi-format generation: Markdown, HTML, PDF, JSON
- Audience adaptation: technical, executive, public
- Executive summary creation with key insights
- Risk assessment and prioritization
- Multilingual support: PT-BR, EN-US

# Advanced features
- Template-based report generation
- Natural language explanation of technical findings
- Visualization integration with charts and graphs
- Compliance report formatting for regulatory bodies
```

**Report Formats:**
- `EXECUTIVE_SUMMARY` - High-level findings for executives
- `TECHNICAL_REPORT` - Detailed analysis for specialists
- `PUBLIC_REPORT` - Citizen-friendly transparency reports
- `COMPLIANCE_REPORT` - Regulatory compliance documentation

### 5. **Ayrton Senna** - Semantic Router (Query Intelligence)
**Cultural Reference**: Ayrton Senna - Formula 1 champion symbolizing precision and speed

```python
# Intelligent routing capabilities
SemanticRouter:
- Rule-based routing with regex patterns
- Semantic similarity analysis for complex queries
- Intent detection for conversational flows
- Fallback strategies for ambiguous cases
- Agent capability matching and load balancing

# Routing strategies
1. Rule-based: Fast pattern matching for common queries
2. Semantic: Vector similarity for complex queries  
3. Fallback: Default routing when ambiguous
```

**Query Types:**
- `INVESTIGATION_QUERY` โ†’ InvestigatorAgent
- `ANALYSIS_QUERY` โ†’ AnalystAgent
- `REPORT_REQUEST` โ†’ ReporterAgent
- `MEMORY_QUERY` โ†’ ContextMemoryAgent

### 6. **Nanรฃ** - Context Memory Agent (Wisdom Keeper)
**Cultural Reference**: Nanรฃ - Yoruba deity of wisdom and ancestral memory

```python
# Multi-layer memory architecture
ContextMemoryAgent:
- Episodic memory: Investigation results and events
- Semantic memory: General knowledge and patterns
- Conversational memory: Dialog context preservation
- Memory importance scoring and decay management
- Vector-based semantic search with ChromaDB

# Memory layers
Episodic: Specific investigation events and results
Semantic: General patterns and knowledge base  
Conversational: Dialog context and user preferences
```

**Memory Operations:**
- `store_episodic()` - Store investigation results
- `retrieve_semantic()` - Query knowledge patterns
- `maintain_conversation()` - Preserve dialog context
- `consolidate_memory()` - Long-term memory formation

### 7. **Machado de Assis** - Textual Analyst (Document Master)
**Cultural Reference**: Machado de Assis - greatest Brazilian writer and literary genius

```python
# Document processing capabilities
TextualAnalyst:
- Document classification: contracts, laws, decrees
- Named Entity Recognition: organizations, values, dates
- Suspicious clause identification using regex patterns
- Legal compliance checking against frameworks
- Readability assessment (Portuguese-adapted Flesch)
- Transparency scoring based on document clarity

# NLP pipeline
1. Document classification and structure analysis
2. Named entity extraction and relationship mapping
3. Suspicious pattern detection in legal text
4. Compliance validation against regulatory frameworks
5. Readability and transparency scoring
```

### 8. **Josรฉ Bonifรกcio** - Policy Analyst (Institutional Architect)
**Cultural Reference**: Josรฉ Bonifรกcio - Patriarch of Independence and institutional architect

```python
# Policy effectiveness evaluation
PolicyAnalyst:
- Efficacy assessment: Did the policy achieve its goals?
- Efficiency evaluation: Resource utilization analysis
- Effectiveness measurement: Impact vs. cost analysis
- Social Return on Investment (SROI) calculation
- Beneficiary impact analysis and coverage assessment
- Sustainability scoring (0-100 scale)

# Evaluation frameworks
- Logic Model: Inputs โ†’ Activities โ†’ Outputs โ†’ Outcomes
- Theory of Change: Causal pathway analysis
- Cost-Benefit Analysis: Economic impact assessment
- Social Impact Measurement: Beneficiary outcome tracking
```

### 9. **Dandara** - Social Justice Agent (Equity Guardian)
**Cultural Reference**: Dandara dos Palmares - warrior for social justice and equality

```python
# Equity monitoring capabilities
SocialJusticeAgent:
- Gini coefficient calculation for inequality measurement
- Equity violation detection using statistical methods
- Inclusion gap identification across demographics
- Distributive justice assessment
- Intersectional analysis capabilities
- Social vulnerability mapping

# Inequality indices
- Gini Coefficient: Income/resource distribution
- Atkinson Index: Inequality aversion measurement
- Theil Index: Decomposable inequality measure
- Palma Ratio: Top 10% vs. bottom 40% comparison
```

## ๐Ÿ”„ Agent Lifecycle & State Management

### Agent States
```python
class AgentStatus(Enum):
    IDLE = "idle"                    # Ready for new tasks
    PROCESSING = "processing"        # Currently executing
    REFLECTING = "reflecting"        # Self-assessment phase
    WAITING = "waiting"             # Waiting for dependencies
    COMPLETED = "completed"         # Task finished successfully
    ERROR = "error"                 # Execution failed
    TIMEOUT = "timeout"             # Execution exceeded time limit
```

### State Transitions
```python
# Normal execution flow
IDLE โ†’ PROCESSING โ†’ COMPLETED
     โ†“           โ†“
   ERROR    REFLECTING โ†’ PROCESSING (adaptive retry)
             โ†“
           COMPLETED (after improvement)

# Timeout handling
PROCESSING โ†’ TIMEOUT โ†’ ERROR (cleanup)
```

## ๐Ÿงช Self-Reflection Mechanisms

### Quality Assessment Framework
```python
class ReflectionMetrics:
    confidence_score: float     # Result confidence (0-1)
    completeness: float        # Investigation thoroughness (0-1)  
    consistency: float         # Internal consistency (0-1)
    novelty: float            # New insights discovered (0-1)
    actionability: float      # Practical usefulness (0-1)

# Reflection triggers
if overall_quality < reflection_threshold:
    reflect_and_improve()
```

### Adaptive Strategies
```python
# Strategy adaptation based on reflection
ReflectionResult:
- quality_issues: List[str]    # Identified problems
- improvement_plan: str        # How to improve
- strategy_adjustments: Dict   # Parameter changes
- confidence_boost: float     # Expected improvement

# Example adaptations
Low confidence โ†’ Increase data sampling
Missing patterns โ†’ Add analysis techniques  
Incomplete coverage โ†’ Expand search criteria
```

## ๐Ÿ’พ Memory Architecture

### Multi-Layer Memory System
```python
# Episodic Memory - Specific events and investigations
EpisodicMemory:
- investigation_results: Dict[str, InvestigationResult]
- agent_interactions: List[AgentMessage]  
- user_queries: List[QueryContext]
- temporal_indexing: Dict[datetime, List[str]]

# Semantic Memory - General knowledge and patterns
SemanticMemory:
- anomaly_patterns: Dict[str, PatternTemplate]
- organization_profiles: Dict[str, OrgProfile]
- vendor_behaviors: Dict[str, VendorProfile]  
- legal_knowledge: Dict[str, LegalConcept]

# Conversational Memory - Dialog context
ConversationalMemory:
- user_preferences: Dict[str, Any]
- conversation_history: List[Message]
- context_stack: List[Context]
- session_metadata: Dict[str, Any]
```

### Memory Operations
```python
# Memory storage with importance weighting
await memory_agent.store_episodic(
    event="investigation_completed",  
    data=investigation_result,
    importance=0.9,  # High importance
    decay_rate=0.1   # Slow decay
)

# Semantic retrieval with vector search
similar_patterns = await memory_agent.retrieve_semantic(
    query_vector=embedding,
    similarity_threshold=0.8,
    max_results=10
)

# Conversational context maintenance
context = await memory_agent.get_conversation_context(
    user_id="user123",
    lookback_messages=20
)
```

## ๐Ÿ›ก๏ธ Security & Ethics

### Agent Security Framework
```python
# Input validation and sanitization
@security_guard
async def process_investigation(query: str) -> InvestigationResult:
    # 1. Input sanitization
    sanitized_query = sanitize_input(query)
    
    # 2. Permission validation  
    validate_permissions(user_context)
    
    # 3. Rate limiting per agent
    await rate_limiter.check_agent_limits(agent_name)
    
    # 4. Audit logging
    await audit_logger.log_agent_action(...)

# Ethics guard - prevents harmful analyses
EthicsGuard:
- prevent_privacy_violations()
- ensure_transparency_goals()  
- validate_public_interest()
- block_discriminatory_analysis()
```

### Audit Trail
```python
# Complete agent action logging
AgentAuditEvent:
- agent_name: str                # Which agent
- action: str                   # What action
- input_data: Dict             # Input parameters (sanitized)
- output_summary: str          # Output summary (no sensitive data)
- success: bool                # Success/failure
- processing_time: float       # Performance metrics
- timestamp: datetime          # When it occurred
- user_context: UserContext    # Who requested it
```

## ๐Ÿงช Testing Strategy

### Agent Testing Framework
```python
# Unit tests for individual agent logic
@pytest.mark.unit
async def test_investigator_price_anomaly_detection():
    agent = InvestigatorAgent()
    data = create_test_contracts_with_price_anomaly()
    
    result = await agent.detect_price_anomalies(data)
    
    assert len(result.anomalies) == 1
    assert result.anomalies[0].type == "PRICE_ANOMALY"
    assert result.anomalies[0].confidence > 0.8

# Integration tests for agent communication
@pytest.mark.integration  
async def test_master_agent_investigation_workflow():
    master = MasterAgent()
    investigator = InvestigatorAgent()
    reporter = ReporterAgent()
    
    # Register agents
    master.register_agent("investigator", investigator)
    master.register_agent("reporter", reporter)
    
    # Execute full workflow
    result = await master.conduct_investigation(
        query="Analyze suspicious contracts",
        agents=["investigator", "reporter"]
    )
    
    assert result.status == "completed"
    assert len(result.findings) > 0
    assert result.report is not None
```

### Mock Agent System
```python
# Mock agents for testing without external dependencies
class MockInvestigatorAgent(InvestigatorAgent):
    async def detect_anomalies(self, data):
        # Return predictable test results
        return create_mock_anomaly_results()

# Test fixtures with realistic data
@pytest.fixture
def sample_investigation_data():
    return {
        "contracts": create_test_contracts(count=1000),
        "vendors": create_test_vendors(count=100),
        "organizations": create_test_organizations(count=50)
    }
```

## ๐Ÿ“Š Performance Metrics

### Agent Performance Monitoring
```python
# Performance metrics per agent
AgentMetrics:
- average_processing_time: float    # Mean execution time
- success_rate: float              # Success percentage
- reflection_frequency: float      # How often reflection occurs
- quality_scores: List[float]      # Historical quality metrics
- memory_usage: float             # Memory consumption
- cache_hit_rate: float           # Cache efficiency

# System-wide metrics
SystemMetrics:
- total_investigations: int        # Total investigations completed
- average_coordination_time: float # Master agent coordination time
- agent_utilization: Dict[str, float] # Per-agent usage
- error_rates: Dict[str, float]   # Per-agent error rates
```

### Scaling Patterns
```python
# Horizontal scaling with agent pools
AgentPool:
- pool_size: int = 5              # Number of agent instances
- load_balancing: str = "round_robin"  # Distribution strategy
- health_checks: bool = True      # Monitor agent health
- auto_scaling: bool = True       # Dynamic scaling based on load

# Vertical scaling with resource limits
ResourceLimits:
- max_memory_mb: int = 1024       # Memory limit per agent
- max_processing_time: int = 300  # Timeout in seconds
- max_concurrent_tasks: int = 10  # Concurrent task limit
```

## ๐Ÿš€ Development & Deployment

### Local Development
```bash
# Run individual agent tests
pytest tests/unit/agents/test_investigator.py -v

# Run multi-agent integration tests  
pytest tests/integration/agents/ -v

# Performance testing with realistic data
pytest tests/performance/agents/ --benchmark-only

# Memory profiling
pytest tests/agents/ --memray
```

### Agent Configuration
```python
# Environment-specific agent configuration
AgentConfig:
    reflection_threshold: float = 0.8    # Quality threshold
    max_reflection_loops: int = 3        # Max improvement iterations
    memory_retention_days: int = 90      # Memory retention period
    enable_learning: bool = False        # Online learning (experimental)
    parallel_processing: bool = True     # Concurrent agent execution
    
# Per-agent configuration
INVESTIGATOR_CONFIG = {
    "anomaly_threshold": 2.5,           # Standard deviations for anomalies
    "similarity_threshold": 0.85,       # Duplicate detection threshold
    "max_records_per_batch": 10000     # Batch processing size
}
```

### Docker Deployment
```dockerfile
# Multi-agent container with resource limits
FROM python:3.11-slim

# Install agent dependencies
COPY requirements/agents.txt .
RUN pip install -r agents.txt

# Copy agent source code
COPY src/agents/ /app/agents/

# Resource limits for agent container
ENV MEMORY_LIMIT=2048MB
ENV CPU_LIMIT=2.0
ENV MAX_AGENTS=10

# Health check for agent system
HEALTHCHECK --interval=30s --timeout=10s \
  CMD python -c "from src.agents import health_check; health_check()"

CMD ["python", "-m", "src.agents.orchestrator"]
```

## ๐Ÿ”ฎ Future Enhancements

### Planned Features
- **Federated Learning**: Agents learn from distributed investigations
- **Dynamic Agent Creation**: Generate specialized agents for new domains
- **Cross-Language Support**: Multi-language document analysis
- **Real-time Collaboration**: Simultaneous multi-agent processing
- **Explainable AI**: Enhanced transparency in agent decision-making

### Research Areas
- **Agent Personality Development**: More sophisticated cultural personas
- **Emotional Intelligence**: Agents that understand social context
- **Creative Problem Solving**: Novel approach generation for complex problems
- **Meta-Learning**: Agents that improve their learning strategies

---

This multi-agent system represents a unique approach to transparency analysis, combining cutting-edge AI with Brazilian cultural identity to create agents that are both technically sophisticated and culturally meaningful. Each agent contributes specialized expertise while working together through advanced coordination patterns to democratize access to government transparency analysis.