File size: 25,470 Bytes
824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 9730fbc 824bf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
"""
Module: agents.nana
Codinome: Nanã - Agente Temporal
Description: Agent responsible for managing episodic and semantic memory
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""
from src.core import json_utils
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple
from pydantic import BaseModel, Field as PydanticField
from src.core import AgentStatus, MemoryImportance, get_logger
from src.core.exceptions import MemoryError, MemoryStorageError, MemoryRetrievalError
from .deodoro import (
AgentContext,
AgentMessage,
AgentResponse,
BaseAgent,
)
class MemoryEntry(BaseModel):
"""Base memory entry."""
id: str = PydanticField(..., description="Unique memory ID")
content: Dict[str, Any] = PydanticField(..., description="Memory content")
timestamp: datetime = PydanticField(default_factory=datetime.utcnow)
importance: MemoryImportance = PydanticField(default=MemoryImportance.MEDIUM)
tags: List[str] = PydanticField(default_factory=list, description="Memory tags")
metadata: Dict[str, Any] = PydanticField(default_factory=dict)
class EpisodicMemory(MemoryEntry):
"""Episodic memory entry for specific events/investigations."""
investigation_id: str = PydanticField(..., description="Investigation ID")
user_id: Optional[str] = PydanticField(default=None, description="User ID")
session_id: Optional[str] = PydanticField(default=None, description="Session ID")
query: str = PydanticField(..., description="Original query")
result: Dict[str, Any] = PydanticField(..., description="Investigation result")
context: Dict[str, Any] = PydanticField(default_factory=dict, description="Context")
class SemanticMemory(MemoryEntry):
"""Semantic memory entry for general knowledge."""
concept: str = PydanticField(..., description="Concept or knowledge item")
relationships: List[str] = PydanticField(default_factory=list, description="Related concepts")
evidence: List[str] = PydanticField(default_factory=list, description="Supporting evidence")
confidence: float = PydanticField(default=0.5, description="Confidence in this knowledge")
class ConversationMemory(MemoryEntry):
"""Memory for conversation context."""
conversation_id: str = PydanticField(..., description="Conversation ID")
turn_number: int = PydanticField(..., description="Turn in conversation")
speaker: str = PydanticField(..., description="Speaker (user/agent)")
message: str = PydanticField(..., description="Message content")
intent: Optional[str] = PydanticField(default=None, description="Detected intent")
class ContextMemoryAgent(BaseAgent):
"""
Agent responsible for managing different types of memory:
- Episodic: Specific investigations and their results
- Semantic: General knowledge about patterns and anomalies
- Conversational: Context from ongoing conversations
"""
def __init__(
self,
redis_client: Any,
vector_store: Any,
max_episodic_memories: int = 1000,
max_conversation_turns: int = 50,
memory_decay_days: int = 30,
**kwargs: Any
) -> None:
"""
Initialize context memory agent.
Args:
redis_client: Redis client for fast access
vector_store: Vector store for semantic search
max_episodic_memories: Maximum episodic memories to keep
max_conversation_turns: Maximum conversation turns to remember
memory_decay_days: Days after which memories start to decay
**kwargs: Additional arguments
"""
super().__init__(
name="ContextMemoryAgent",
description="Manages episodic, semantic, and conversational memory",
capabilities=[
"store_episodic",
"retrieve_episodic",
"store_semantic",
"retrieve_semantic",
"store_conversation",
"get_conversation_context",
"get_relevant_context",
"forget_memories",
"consolidate_memories",
],
**kwargs
)
self.redis_client = redis_client
self.vector_store = vector_store
self.max_episodic_memories = max_episodic_memories
self.max_conversation_turns = max_conversation_turns
self.memory_decay_days = memory_decay_days
# Memory keys
self.episodic_key = "cidadao:memory:episodic"
self.semantic_key = "cidadao:memory:semantic"
self.conversation_key = "cidadao:memory:conversation"
self.logger.info(
"context_memory_agent_initialized",
max_episodic=max_episodic_memories,
max_conversation=max_conversation_turns,
)
async def initialize(self) -> None:
"""Initialize memory agent."""
self.logger.info("context_memory_agent_initializing")
# Test Redis connection
await self.redis_client.ping()
# Initialize vector store if needed
if hasattr(self.vector_store, 'initialize'):
await self.vector_store.initialize()
self.status = AgentStatus.IDLE
self.logger.info("context_memory_agent_initialized")
async def shutdown(self) -> None:
"""Shutdown memory agent."""
self.logger.info("context_memory_agent_shutting_down")
# Close connections
if hasattr(self.redis_client, 'close'):
await self.redis_client.close()
if hasattr(self.vector_store, 'close'):
await self.vector_store.close()
self.logger.info("context_memory_agent_shutdown_complete")
async def process(
self,
message: AgentMessage,
context: AgentContext,
) -> AgentResponse:
"""
Process memory-related messages.
Args:
message: Message to process
context: Agent context
Returns:
Agent response
"""
action = message.action
payload = message.payload
self.logger.info(
"memory_agent_processing",
action=action,
context_id=context.investigation_id,
)
try:
if action == "store_episodic":
result = await self._store_episodic_memory(payload, context)
elif action == "retrieve_episodic":
result = await self._retrieve_episodic_memory(payload, context)
elif action == "store_semantic":
result = await self._store_semantic_memory(payload, context)
elif action == "retrieve_semantic":
result = await self._retrieve_semantic_memory(payload, context)
elif action == "store_conversation":
result = await self._store_conversation_memory(payload, context)
elif action == "get_conversation_context":
result = await self._get_conversation_context(payload, context)
elif action == "get_relevant_context":
result = await self._get_relevant_context(payload, context)
elif action == "forget_memories":
result = await self._forget_memories(payload, context)
elif action == "consolidate_memories":
result = await self._consolidate_memories(payload, context)
else:
raise MemoryError(
f"Unknown action: {action}",
details={"action": action, "available_actions": self.capabilities}
)
return AgentResponse(
agent_name=self.name,
status=AgentStatus.COMPLETED,
result=result,
metadata={"action": action, "context_id": context.investigation_id},
)
except Exception as e:
self.logger.error(
"memory_agent_processing_failed",
action=action,
error=str(e),
context_id=context.investigation_id,
)
return AgentResponse(
agent_name=self.name,
status=AgentStatus.ERROR,
error=str(e),
metadata={"action": action, "context_id": context.investigation_id},
)
async def store_investigation(
self,
investigation_result: Any,
context: AgentContext,
) -> None:
"""
Store investigation result in memory.
Args:
investigation_result: Investigation result to store
context: Agent context
"""
memory_entry = EpisodicMemory(
id=f"inv_{investigation_result.investigation_id}",
investigation_id=investigation_result.investigation_id,
user_id=context.user_id,
session_id=context.session_id,
query=investigation_result.query,
result=investigation_result.model_dump() if hasattr(investigation_result, 'model_dump') else investigation_result,
content={
"type": "investigation_result",
"query": investigation_result.query,
"findings_count": len(investigation_result.findings),
"confidence": investigation_result.confidence_score,
},
importance=self._calculate_importance(investigation_result),
tags=self._extract_tags(investigation_result.query),
context=context.to_dict(),
)
await self._store_episodic_memory(
{"memory_entry": memory_entry.model_dump()},
context
)
async def get_relevant_context(
self,
query: str,
context: AgentContext,
limit: int = 5,
) -> Dict[str, Any]:
"""
Get relevant context for a query.
Args:
query: Query to find context for
context: Agent context
limit: Maximum number of relevant memories
Returns:
Relevant context
"""
# Get episodic memories
episodic_context = await self._retrieve_episodic_memory(
{"query": query, "limit": limit},
context
)
# Get semantic memories
semantic_context = await self._retrieve_semantic_memory(
{"query": query, "limit": limit},
context
)
# Get conversation context
conversation_context = await self._get_conversation_context(
{"session_id": context.session_id, "limit": 10},
context
)
return {
"episodic": episodic_context,
"semantic": semantic_context,
"conversation": conversation_context,
"query": query,
"timestamp": datetime.utcnow().isoformat(),
}
async def _store_episodic_memory(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> Dict[str, Any]:
"""Store episodic memory."""
try:
memory_entry = payload.get("memory_entry")
if not memory_entry:
raise MemoryStorageError("No memory entry provided")
# Store in Redis for fast access
key = f"{self.episodic_key}:{memory_entry['id']}"
await self.redis_client.setex(
key,
timedelta(days=self.memory_decay_days),
json_utils.dumps(memory_entry)
)
# Store in vector store for semantic search
content = memory_entry.get("content", {})
if content:
await self.vector_store.add_documents([{
"id": memory_entry["id"],
"content": json_utils.dumps(content),
"metadata": memory_entry,
}])
# Manage memory size
await self._manage_memory_size()
self.logger.info(
"episodic_memory_stored",
memory_id=memory_entry["id"],
importance=memory_entry.get("importance"),
)
return {"status": "stored", "memory_id": memory_entry["id"]}
except Exception as e:
raise MemoryStorageError(f"Failed to store episodic memory: {str(e)}")
async def _retrieve_episodic_memory(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> List[Dict[str, Any]]:
"""Retrieve episodic memories."""
try:
query = payload.get("query", "")
limit = payload.get("limit", 5)
if not query:
# Return recent memories
return await self._get_recent_memories(limit)
# Semantic search using vector store
results = await self.vector_store.similarity_search(
query=query,
limit=limit,
filter_metadata={"type": "investigation_result"}
)
memories = []
for result in results:
memory_id = result.get("id")
if memory_id:
memory_data = await self.redis_client.get(
f"{self.episodic_key}:{memory_id}"
)
if memory_data:
memories.append(json_utils.loads(memory_data))
self.logger.info(
"episodic_memories_retrieved",
query=query,
count=len(memories),
)
return memories
except Exception as e:
raise MemoryRetrievalError(f"Failed to retrieve episodic memory: {str(e)}")
async def _store_semantic_memory(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> Dict[str, Any]:
"""Store semantic memory."""
try:
concept = payload.get("concept", "")
content = payload.get("content", {})
if not concept or not content:
raise MemoryStorageError("Concept and content required for semantic memory")
memory_entry = SemanticMemory(
id=f"sem_{concept.lower().replace(' ', '_')}_{int(datetime.utcnow().timestamp())}",
concept=concept,
content=content,
relationships=payload.get("relationships", []),
evidence=payload.get("evidence", []),
confidence=payload.get("confidence", 0.5),
importance=MemoryImportance.MEDIUM,
tags=self._extract_tags(concept),
)
# Store in Redis
key = f"{self.semantic_key}:{memory_entry.id}"
await self.redis_client.setex(
key,
timedelta(days=self.memory_decay_days * 2), # Semantic memories last longer
json_utils.dumps(memory_entry.model_dump())
)
# Store in vector store
await self.vector_store.add_documents([{
"id": memory_entry.id,
"content": f"{concept}: {json_utils.dumps(content)}",
"metadata": memory_entry.model_dump(),
}])
self.logger.info(
"semantic_memory_stored",
concept=concept,
memory_id=memory_entry.id,
)
return {"status": "stored", "memory_id": memory_entry.id}
except Exception as e:
raise MemoryStorageError(f"Failed to store semantic memory: {str(e)}")
async def _retrieve_semantic_memory(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> List[Dict[str, Any]]:
"""Retrieve semantic memories."""
try:
query = payload.get("query", "")
limit = payload.get("limit", 5)
# Semantic search
results = await self.vector_store.similarity_search(
query=query,
limit=limit,
filter_metadata={"concept": {"$exists": True}}
)
memories = []
for result in results:
memory_id = result.get("id")
if memory_id:
memory_data = await self.redis_client.get(
f"{self.semantic_key}:{memory_id}"
)
if memory_data:
memories.append(json_utils.loads(memory_data))
self.logger.info(
"semantic_memories_retrieved",
query=query,
count=len(memories),
)
return memories
except Exception as e:
raise MemoryRetrievalError(f"Failed to retrieve semantic memory: {str(e)}")
async def _store_conversation_memory(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> Dict[str, Any]:
"""Store conversation memory."""
try:
conversation_id = payload.get("conversation_id", context.session_id)
message = payload.get("message", "")
speaker = payload.get("speaker", "user")
if not conversation_id or not message:
raise MemoryStorageError("Conversation ID and message required")
# Get current turn number
turn_key = f"{self.conversation_key}:turns:{conversation_id}"
turn_number = await self.redis_client.incr(turn_key)
memory_entry = ConversationMemory(
id=f"conv_{conversation_id}_{turn_number}",
conversation_id=conversation_id,
turn_number=turn_number,
speaker=speaker,
message=message,
intent=payload.get("intent"),
content={
"type": "conversation",
"speaker": speaker,
"message": message,
},
importance=MemoryImportance.LOW,
tags=self._extract_tags(message),
)
# Store in Redis with conversation-specific key
key = f"{self.conversation_key}:{conversation_id}:{turn_number}"
await self.redis_client.setex(
key,
timedelta(hours=24), # Conversations expire after 24 hours
json_utils.dumps(memory_entry.model_dump())
)
# Manage conversation size
await self._manage_conversation_size(conversation_id)
self.logger.info(
"conversation_memory_stored",
conversation_id=conversation_id,
turn_number=turn_number,
speaker=speaker,
)
return {"status": "stored", "turn_number": turn_number}
except Exception as e:
raise MemoryStorageError(f"Failed to store conversation memory: {str(e)}")
async def _get_conversation_context(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> List[Dict[str, Any]]:
"""Get conversation context."""
try:
conversation_id = payload.get("conversation_id", context.session_id)
limit = payload.get("limit", 10)
if not conversation_id:
return []
# Get recent conversation turns
pattern = f"{self.conversation_key}:{conversation_id}:*"
keys = await self.redis_client.keys(pattern)
# Sort by turn number (descending)
keys.sort(key=lambda k: int(k.split(":")[-1]), reverse=True)
memories = []
for key in keys[:limit]:
memory_data = await self.redis_client.get(key)
if memory_data:
memories.append(json_utils.loads(memory_data))
# Reverse to get chronological order
memories.reverse()
self.logger.info(
"conversation_context_retrieved",
conversation_id=conversation_id,
count=len(memories),
)
return memories
except Exception as e:
raise MemoryRetrievalError(f"Failed to get conversation context: {str(e)}")
async def _get_relevant_context(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> Dict[str, Any]:
"""Get all relevant context for a query."""
return await self.get_relevant_context(
payload.get("query", ""),
context,
payload.get("limit", 5)
)
async def _forget_memories(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> Dict[str, Any]:
"""Forget specific memories or old memories."""
# Implementation for forgetting memories
forgotten_count = 0
return {"status": "completed", "forgotten_count": forgotten_count}
async def _consolidate_memories(
self,
payload: Dict[str, Any],
context: AgentContext,
) -> Dict[str, Any]:
"""Consolidate similar memories."""
# Implementation for memory consolidation
consolidated_count = 0
return {"status": "completed", "consolidated_count": consolidated_count}
def _calculate_importance(self, investigation_result: Any) -> MemoryImportance:
"""Calculate importance of an investigation result."""
confidence = getattr(investigation_result, 'confidence_score', 0.0)
findings_count = len(getattr(investigation_result, 'findings', []))
if confidence > 0.8 and findings_count > 3:
return MemoryImportance.CRITICAL
elif confidence > 0.6 and findings_count > 1:
return MemoryImportance.HIGH
elif confidence > 0.4:
return MemoryImportance.MEDIUM
else:
return MemoryImportance.LOW
def _extract_tags(self, text: str) -> List[str]:
"""Extract tags from text for better organization."""
# Simple tag extraction - could be enhanced with NLP
keywords = [
"contrato", "licitação", "emergencial", "suspeito", "anomalia",
"ministério", "prefeitura", "fornecedor", "valor", "preço",
]
text_lower = text.lower()
return [keyword for keyword in keywords if keyword in text_lower]
async def _manage_memory_size(self) -> None:
"""Manage memory size by removing old/unimportant memories."""
# Get count of episodic memories
pattern = f"{self.episodic_key}:*"
keys = await self.redis_client.keys(pattern)
if len(keys) > self.max_episodic_memories:
# Remove oldest memories first
# In production, would consider importance scores
keys_to_remove = keys[:-self.max_episodic_memories]
for key in keys_to_remove:
await self.redis_client.delete(key)
self.logger.info(
"episodic_memories_cleaned",
removed_count=len(keys_to_remove),
remaining_count=self.max_episodic_memories,
)
async def _manage_conversation_size(self, conversation_id: str) -> None:
"""Manage conversation memory size."""
pattern = f"{self.conversation_key}:{conversation_id}:*"
keys = await self.redis_client.keys(pattern)
if len(keys) > self.max_conversation_turns:
# Sort by turn number and keep only recent ones
keys.sort(key=lambda k: int(k.split(":")[-1]))
keys_to_remove = keys[:-self.max_conversation_turns]
for key in keys_to_remove:
await self.redis_client.delete(key)
self.logger.info(
"conversation_memory_cleaned",
conversation_id=conversation_id,
removed_count=len(keys_to_remove),
)
async def _get_recent_memories(self, limit: int) -> List[Dict[str, Any]]:
"""Get recent episodic memories."""
pattern = f"{self.episodic_key}:*"
keys = await self.redis_client.keys(pattern)
memories = []
for key in keys[:limit]:
memory_data = await self.redis_client.get(key)
if memory_data:
memories.append(json_utils.loads(memory_data))
# Sort by timestamp (most recent first)
memories.sort(
key=lambda m: m.get("timestamp", ""),
reverse=True
)
return memories[:limit] |