File size: 25,470 Bytes
824bf31
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9730fbc
824bf31
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
"""
Module: agents.nana
Codinome: Nanã - Agente Temporal
Description: Agent responsible for managing episodic and semantic memory
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""

from src.core import json_utils
from datetime import datetime, timedelta
from typing import Any, Dict, List, Optional, Tuple

from pydantic import BaseModel, Field as PydanticField

from src.core import AgentStatus, MemoryImportance, get_logger
from src.core.exceptions import MemoryError, MemoryStorageError, MemoryRetrievalError
from .deodoro import (
    AgentContext,
    AgentMessage,
    AgentResponse,
    BaseAgent,
)


class MemoryEntry(BaseModel):
    """Base memory entry."""
    
    id: str = PydanticField(..., description="Unique memory ID")
    content: Dict[str, Any] = PydanticField(..., description="Memory content")
    timestamp: datetime = PydanticField(default_factory=datetime.utcnow)
    importance: MemoryImportance = PydanticField(default=MemoryImportance.MEDIUM)
    tags: List[str] = PydanticField(default_factory=list, description="Memory tags")
    metadata: Dict[str, Any] = PydanticField(default_factory=dict)


class EpisodicMemory(MemoryEntry):
    """Episodic memory entry for specific events/investigations."""
    
    investigation_id: str = PydanticField(..., description="Investigation ID")
    user_id: Optional[str] = PydanticField(default=None, description="User ID")
    session_id: Optional[str] = PydanticField(default=None, description="Session ID")
    query: str = PydanticField(..., description="Original query")
    result: Dict[str, Any] = PydanticField(..., description="Investigation result")
    context: Dict[str, Any] = PydanticField(default_factory=dict, description="Context")


class SemanticMemory(MemoryEntry):
    """Semantic memory entry for general knowledge."""
    
    concept: str = PydanticField(..., description="Concept or knowledge item")
    relationships: List[str] = PydanticField(default_factory=list, description="Related concepts")
    evidence: List[str] = PydanticField(default_factory=list, description="Supporting evidence")
    confidence: float = PydanticField(default=0.5, description="Confidence in this knowledge")


class ConversationMemory(MemoryEntry):
    """Memory for conversation context."""
    
    conversation_id: str = PydanticField(..., description="Conversation ID")
    turn_number: int = PydanticField(..., description="Turn in conversation")
    speaker: str = PydanticField(..., description="Speaker (user/agent)")
    message: str = PydanticField(..., description="Message content")
    intent: Optional[str] = PydanticField(default=None, description="Detected intent")


class ContextMemoryAgent(BaseAgent):
    """
    Agent responsible for managing different types of memory:
    - Episodic: Specific investigations and their results
    - Semantic: General knowledge about patterns and anomalies  
    - Conversational: Context from ongoing conversations
    """
    
    def __init__(
        self,
        redis_client: Any,
        vector_store: Any,
        max_episodic_memories: int = 1000,
        max_conversation_turns: int = 50,
        memory_decay_days: int = 30,
        **kwargs: Any
    ) -> None:
        """
        Initialize context memory agent.
        
        Args:
            redis_client: Redis client for fast access
            vector_store: Vector store for semantic search
            max_episodic_memories: Maximum episodic memories to keep
            max_conversation_turns: Maximum conversation turns to remember
            memory_decay_days: Days after which memories start to decay
            **kwargs: Additional arguments
        """
        super().__init__(
            name="ContextMemoryAgent",
            description="Manages episodic, semantic, and conversational memory",
            capabilities=[
                "store_episodic",
                "retrieve_episodic",
                "store_semantic",
                "retrieve_semantic", 
                "store_conversation",
                "get_conversation_context",
                "get_relevant_context",
                "forget_memories",
                "consolidate_memories",
            ],
            **kwargs
        )
        
        self.redis_client = redis_client
        self.vector_store = vector_store
        self.max_episodic_memories = max_episodic_memories
        self.max_conversation_turns = max_conversation_turns
        self.memory_decay_days = memory_decay_days
        
        # Memory keys
        self.episodic_key = "cidadao:memory:episodic"
        self.semantic_key = "cidadao:memory:semantic"
        self.conversation_key = "cidadao:memory:conversation"
        
        self.logger.info(
            "context_memory_agent_initialized",
            max_episodic=max_episodic_memories,
            max_conversation=max_conversation_turns,
        )
    
    async def initialize(self) -> None:
        """Initialize memory agent."""
        self.logger.info("context_memory_agent_initializing")
        
        # Test Redis connection
        await self.redis_client.ping()
        
        # Initialize vector store if needed
        if hasattr(self.vector_store, 'initialize'):
            await self.vector_store.initialize()
        
        self.status = AgentStatus.IDLE
        self.logger.info("context_memory_agent_initialized")
    
    async def shutdown(self) -> None:
        """Shutdown memory agent."""
        self.logger.info("context_memory_agent_shutting_down")
        
        # Close connections
        if hasattr(self.redis_client, 'close'):
            await self.redis_client.close()
        
        if hasattr(self.vector_store, 'close'):
            await self.vector_store.close()
        
        self.logger.info("context_memory_agent_shutdown_complete")
    
    async def process(
        self,
        message: AgentMessage,
        context: AgentContext,
    ) -> AgentResponse:
        """
        Process memory-related messages.
        
        Args:
            message: Message to process
            context: Agent context
            
        Returns:
            Agent response
        """
        action = message.action
        payload = message.payload
        
        self.logger.info(
            "memory_agent_processing",
            action=action,
            context_id=context.investigation_id,
        )
        
        try:
            if action == "store_episodic":
                result = await self._store_episodic_memory(payload, context)
            elif action == "retrieve_episodic":
                result = await self._retrieve_episodic_memory(payload, context)
            elif action == "store_semantic":
                result = await self._store_semantic_memory(payload, context)
            elif action == "retrieve_semantic":
                result = await self._retrieve_semantic_memory(payload, context)
            elif action == "store_conversation":
                result = await self._store_conversation_memory(payload, context)
            elif action == "get_conversation_context":
                result = await self._get_conversation_context(payload, context)
            elif action == "get_relevant_context":
                result = await self._get_relevant_context(payload, context)
            elif action == "forget_memories":
                result = await self._forget_memories(payload, context)
            elif action == "consolidate_memories":
                result = await self._consolidate_memories(payload, context)
            else:
                raise MemoryError(
                    f"Unknown action: {action}",
                    details={"action": action, "available_actions": self.capabilities}
                )
            
            return AgentResponse(
                agent_name=self.name,
                status=AgentStatus.COMPLETED,
                result=result,
                metadata={"action": action, "context_id": context.investigation_id},
            )
            
        except Exception as e:
            self.logger.error(
                "memory_agent_processing_failed",
                action=action,
                error=str(e),
                context_id=context.investigation_id,
            )
            
            return AgentResponse(
                agent_name=self.name,
                status=AgentStatus.ERROR,
                error=str(e),
                metadata={"action": action, "context_id": context.investigation_id},
            )
    
    async def store_investigation(
        self,
        investigation_result: Any,
        context: AgentContext,
    ) -> None:
        """
        Store investigation result in memory.
        
        Args:
            investigation_result: Investigation result to store
            context: Agent context
        """
        memory_entry = EpisodicMemory(
            id=f"inv_{investigation_result.investigation_id}",
            investigation_id=investigation_result.investigation_id,
            user_id=context.user_id,
            session_id=context.session_id,
            query=investigation_result.query,
            result=investigation_result.model_dump() if hasattr(investigation_result, 'model_dump') else investigation_result,
            content={
                "type": "investigation_result",
                "query": investigation_result.query,
                "findings_count": len(investigation_result.findings),
                "confidence": investigation_result.confidence_score,
            },
            importance=self._calculate_importance(investigation_result),
            tags=self._extract_tags(investigation_result.query),
            context=context.to_dict(),
        )
        
        await self._store_episodic_memory(
            {"memory_entry": memory_entry.model_dump()},
            context
        )
    
    async def get_relevant_context(
        self,
        query: str,
        context: AgentContext,
        limit: int = 5,
    ) -> Dict[str, Any]:
        """
        Get relevant context for a query.
        
        Args:
            query: Query to find context for
            context: Agent context  
            limit: Maximum number of relevant memories
            
        Returns:
            Relevant context
        """
        # Get episodic memories
        episodic_context = await self._retrieve_episodic_memory(
            {"query": query, "limit": limit},
            context
        )
        
        # Get semantic memories
        semantic_context = await self._retrieve_semantic_memory(
            {"query": query, "limit": limit},
            context
        )
        
        # Get conversation context
        conversation_context = await self._get_conversation_context(
            {"session_id": context.session_id, "limit": 10},
            context
        )
        
        return {
            "episodic": episodic_context,
            "semantic": semantic_context,
            "conversation": conversation_context,
            "query": query,
            "timestamp": datetime.utcnow().isoformat(),
        }
    
    async def _store_episodic_memory(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Store episodic memory."""
        try:
            memory_entry = payload.get("memory_entry")
            if not memory_entry:
                raise MemoryStorageError("No memory entry provided")
            
            # Store in Redis for fast access
            key = f"{self.episodic_key}:{memory_entry['id']}"
            await self.redis_client.setex(
                key,
                timedelta(days=self.memory_decay_days),
                json_utils.dumps(memory_entry)
            )
            
            # Store in vector store for semantic search
            content = memory_entry.get("content", {})
            if content:
                await self.vector_store.add_documents([{
                    "id": memory_entry["id"],
                    "content": json_utils.dumps(content),
                    "metadata": memory_entry,
                }])
            
            # Manage memory size
            await self._manage_memory_size()
            
            self.logger.info(
                "episodic_memory_stored",
                memory_id=memory_entry["id"],
                importance=memory_entry.get("importance"),
            )
            
            return {"status": "stored", "memory_id": memory_entry["id"]}
            
        except Exception as e:
            raise MemoryStorageError(f"Failed to store episodic memory: {str(e)}")
    
    async def _retrieve_episodic_memory(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> List[Dict[str, Any]]:
        """Retrieve episodic memories."""
        try:
            query = payload.get("query", "")
            limit = payload.get("limit", 5)
            
            if not query:
                # Return recent memories
                return await self._get_recent_memories(limit)
            
            # Semantic search using vector store
            results = await self.vector_store.similarity_search(
                query=query,
                limit=limit,
                filter_metadata={"type": "investigation_result"}
            )
            
            memories = []
            for result in results:
                memory_id = result.get("id")
                if memory_id:
                    memory_data = await self.redis_client.get(
                        f"{self.episodic_key}:{memory_id}"
                    )
                    if memory_data:
                        memories.append(json_utils.loads(memory_data))
            
            self.logger.info(
                "episodic_memories_retrieved",
                query=query,
                count=len(memories),
            )
            
            return memories
            
        except Exception as e:
            raise MemoryRetrievalError(f"Failed to retrieve episodic memory: {str(e)}")
    
    async def _store_semantic_memory(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Store semantic memory."""
        try:
            concept = payload.get("concept", "")
            content = payload.get("content", {})
            
            if not concept or not content:
                raise MemoryStorageError("Concept and content required for semantic memory")
            
            memory_entry = SemanticMemory(
                id=f"sem_{concept.lower().replace(' ', '_')}_{int(datetime.utcnow().timestamp())}",
                concept=concept,
                content=content,
                relationships=payload.get("relationships", []),
                evidence=payload.get("evidence", []),
                confidence=payload.get("confidence", 0.5),
                importance=MemoryImportance.MEDIUM,
                tags=self._extract_tags(concept),
            )
            
            # Store in Redis
            key = f"{self.semantic_key}:{memory_entry.id}"
            await self.redis_client.setex(
                key,
                timedelta(days=self.memory_decay_days * 2),  # Semantic memories last longer
                json_utils.dumps(memory_entry.model_dump())
            )
            
            # Store in vector store
            await self.vector_store.add_documents([{
                "id": memory_entry.id,
                "content": f"{concept}: {json_utils.dumps(content)}",
                "metadata": memory_entry.model_dump(),
            }])
            
            self.logger.info(
                "semantic_memory_stored",
                concept=concept,
                memory_id=memory_entry.id,
            )
            
            return {"status": "stored", "memory_id": memory_entry.id}
            
        except Exception as e:
            raise MemoryStorageError(f"Failed to store semantic memory: {str(e)}")
    
    async def _retrieve_semantic_memory(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> List[Dict[str, Any]]:
        """Retrieve semantic memories."""
        try:
            query = payload.get("query", "")
            limit = payload.get("limit", 5)
            
            # Semantic search
            results = await self.vector_store.similarity_search(
                query=query,
                limit=limit,
                filter_metadata={"concept": {"$exists": True}}
            )
            
            memories = []
            for result in results:
                memory_id = result.get("id")
                if memory_id:
                    memory_data = await self.redis_client.get(
                        f"{self.semantic_key}:{memory_id}"
                    )
                    if memory_data:
                        memories.append(json_utils.loads(memory_data))
            
            self.logger.info(
                "semantic_memories_retrieved",
                query=query,
                count=len(memories),
            )
            
            return memories
            
        except Exception as e:
            raise MemoryRetrievalError(f"Failed to retrieve semantic memory: {str(e)}")
    
    async def _store_conversation_memory(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Store conversation memory."""
        try:
            conversation_id = payload.get("conversation_id", context.session_id)
            message = payload.get("message", "")
            speaker = payload.get("speaker", "user")
            
            if not conversation_id or not message:
                raise MemoryStorageError("Conversation ID and message required")
            
            # Get current turn number
            turn_key = f"{self.conversation_key}:turns:{conversation_id}"
            turn_number = await self.redis_client.incr(turn_key)
            
            memory_entry = ConversationMemory(
                id=f"conv_{conversation_id}_{turn_number}",
                conversation_id=conversation_id,
                turn_number=turn_number,
                speaker=speaker,
                message=message,
                intent=payload.get("intent"),
                content={
                    "type": "conversation",
                    "speaker": speaker,
                    "message": message,
                },
                importance=MemoryImportance.LOW,
                tags=self._extract_tags(message),
            )
            
            # Store in Redis with conversation-specific key
            key = f"{self.conversation_key}:{conversation_id}:{turn_number}"
            await self.redis_client.setex(
                key,
                timedelta(hours=24),  # Conversations expire after 24 hours
                json_utils.dumps(memory_entry.model_dump())
            )
            
            # Manage conversation size
            await self._manage_conversation_size(conversation_id)
            
            self.logger.info(
                "conversation_memory_stored",
                conversation_id=conversation_id,
                turn_number=turn_number,
                speaker=speaker,
            )
            
            return {"status": "stored", "turn_number": turn_number}
            
        except Exception as e:
            raise MemoryStorageError(f"Failed to store conversation memory: {str(e)}")
    
    async def _get_conversation_context(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> List[Dict[str, Any]]:
        """Get conversation context."""
        try:
            conversation_id = payload.get("conversation_id", context.session_id)
            limit = payload.get("limit", 10)
            
            if not conversation_id:
                return []
            
            # Get recent conversation turns
            pattern = f"{self.conversation_key}:{conversation_id}:*"
            keys = await self.redis_client.keys(pattern)
            
            # Sort by turn number (descending)
            keys.sort(key=lambda k: int(k.split(":")[-1]), reverse=True)
            
            memories = []
            for key in keys[:limit]:
                memory_data = await self.redis_client.get(key)
                if memory_data:
                    memories.append(json_utils.loads(memory_data))
            
            # Reverse to get chronological order
            memories.reverse()
            
            self.logger.info(
                "conversation_context_retrieved",
                conversation_id=conversation_id,
                count=len(memories),
            )
            
            return memories
            
        except Exception as e:
            raise MemoryRetrievalError(f"Failed to get conversation context: {str(e)}")
    
    async def _get_relevant_context(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Get all relevant context for a query."""
        return await self.get_relevant_context(
            payload.get("query", ""),
            context,
            payload.get("limit", 5)
        )
    
    async def _forget_memories(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Forget specific memories or old memories."""
        # Implementation for forgetting memories
        forgotten_count = 0
        return {"status": "completed", "forgotten_count": forgotten_count}
    
    async def _consolidate_memories(
        self,
        payload: Dict[str, Any],
        context: AgentContext,
    ) -> Dict[str, Any]:
        """Consolidate similar memories."""
        # Implementation for memory consolidation
        consolidated_count = 0
        return {"status": "completed", "consolidated_count": consolidated_count}
    
    def _calculate_importance(self, investigation_result: Any) -> MemoryImportance:
        """Calculate importance of an investigation result."""
        confidence = getattr(investigation_result, 'confidence_score', 0.0)
        findings_count = len(getattr(investigation_result, 'findings', []))
        
        if confidence > 0.8 and findings_count > 3:
            return MemoryImportance.CRITICAL
        elif confidence > 0.6 and findings_count > 1:
            return MemoryImportance.HIGH
        elif confidence > 0.4:
            return MemoryImportance.MEDIUM
        else:
            return MemoryImportance.LOW
    
    def _extract_tags(self, text: str) -> List[str]:
        """Extract tags from text for better organization."""
        # Simple tag extraction - could be enhanced with NLP
        keywords = [
            "contrato", "licitação", "emergencial", "suspeito", "anomalia",
            "ministério", "prefeitura", "fornecedor", "valor", "preço",
        ]
        
        text_lower = text.lower()
        return [keyword for keyword in keywords if keyword in text_lower]
    
    async def _manage_memory_size(self) -> None:
        """Manage memory size by removing old/unimportant memories."""
        # Get count of episodic memories
        pattern = f"{self.episodic_key}:*"
        keys = await self.redis_client.keys(pattern)
        
        if len(keys) > self.max_episodic_memories:
            # Remove oldest memories first
            # In production, would consider importance scores
            keys_to_remove = keys[:-self.max_episodic_memories]
            for key in keys_to_remove:
                await self.redis_client.delete(key)
            
            self.logger.info(
                "episodic_memories_cleaned",
                removed_count=len(keys_to_remove),
                remaining_count=self.max_episodic_memories,
            )
    
    async def _manage_conversation_size(self, conversation_id: str) -> None:
        """Manage conversation memory size."""
        pattern = f"{self.conversation_key}:{conversation_id}:*"
        keys = await self.redis_client.keys(pattern)
        
        if len(keys) > self.max_conversation_turns:
            # Sort by turn number and keep only recent ones
            keys.sort(key=lambda k: int(k.split(":")[-1]))
            keys_to_remove = keys[:-self.max_conversation_turns]
            
            for key in keys_to_remove:
                await self.redis_client.delete(key)
            
            self.logger.info(
                "conversation_memory_cleaned",
                conversation_id=conversation_id,
                removed_count=len(keys_to_remove),
            )
    
    async def _get_recent_memories(self, limit: int) -> List[Dict[str, Any]]:
        """Get recent episodic memories."""
        pattern = f"{self.episodic_key}:*"
        keys = await self.redis_client.keys(pattern)
        
        memories = []
        for key in keys[:limit]:
            memory_data = await self.redis_client.get(key)
            if memory_data:
                memories.append(json_utils.loads(memory_data))
        
        # Sort by timestamp (most recent first)
        memories.sort(
            key=lambda m: m.get("timestamp", ""),
            reverse=True
        )
        
        return memories[:limit]