File size: 16,363 Bytes
5f505aa
 
 
 
 
 
 
 
 
 
 
 
 
035ac5e
 
82f9400
 
 
 
 
 
5f505aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
Module: api.routes.agents
Description: Direct agent endpoints for specialized AI agents
Author: Anderson H. Silva
Date: 2025-09-25
License: Proprietary - All rights reserved
"""

from typing import Dict, Any, Optional
from fastapi import APIRouter, HTTPException, Depends, BackgroundTasks
from pydantic import BaseModel, Field

from src.core import get_logger
from src.api.middleware.authentication import get_current_user
from src.api.auth import User
from src.infrastructure.rate_limiter import RateLimitTier

# Temporary function until proper rate limit tier detection is implemented
async def get_rate_limit_tier() -> RateLimitTier:
    """Get rate limit tier for current user."""
    return RateLimitTier.BASIC
from src.agents import ZumbiAgent, AnitaAgent, TiradentesAgent, BonifacioAgent, AgentContext
from src.infrastructure.observability.metrics import track_time, count_calls


logger = get_logger(__name__)
router = APIRouter()


class AgentRequest(BaseModel):
    """Base request model for agent operations."""
    query: str = Field(..., description="Query or input for the agent")
    context: Dict[str, Any] = Field(default_factory=dict, description="Additional context")
    options: Dict[str, Any] = Field(default_factory=dict, description="Agent-specific options")


class AgentResponse(BaseModel):
    """Base response model for agent operations."""
    agent: str = Field(..., description="Agent name")
    result: Dict[str, Any] = Field(..., description="Agent processing result")
    metadata: Dict[str, Any] = Field(default_factory=dict, description="Processing metadata")
    success: bool = Field(default=True, description="Operation success status")
    message: Optional[str] = Field(None, description="Optional status message")


@router.post("/zumbi", response_model=AgentResponse)
@track_time("agent_zumbi_process")
@count_calls("agent_zumbi_requests")
async def process_zumbi_request(
    request: AgentRequest,
    background_tasks: BackgroundTasks,
    current_user: User = Depends(get_current_user),
    rate_limit_tier: RateLimitTier = Depends(get_rate_limit_tier)
):
    """
    Process request with Zumbi dos Palmares agent.
    
    Zumbi specializes in anomaly detection and investigation:
    - Price anomalies and overpricing
    - Vendor concentration and cartels
    - Temporal pattern irregularities
    - Contract duplication
    - Payment irregularities
    """
    try:
        # Create agent context
        context = AgentContext(
            user_id=current_user.id if current_user else "anonymous",
            session_id=str(request.context.get("session_id", "default")),
            request_id=str(request.context.get("request_id", "unknown")),
            metadata={
                "rate_limit_tier": rate_limit_tier.value,
                **request.context
            }
        )
        
        # Initialize Zumbi agent
        zumbi = ZumbiAgent()
        
        # Process request
        result = await zumbi.process(
            message=request.query,
            context=context,
            **request.options
        )
        
        return AgentResponse(
            agent="zumbi_dos_palmares",
            result=result.data if hasattr(result, 'data') else {"analysis": str(result)},
            metadata={
                "processing_time": result.metadata.get("processing_time", 0) if hasattr(result, 'metadata') else 0,
                "anomalies_detected": result.metadata.get("anomalies_detected", 0) if hasattr(result, 'metadata') else 0,
            },
            success=True,
            message="Anomaly detection completed successfully"
        )
        
    except Exception as e:
        logger.error(f"Zumbi agent error: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Zumbi agent processing failed: {str(e)}"
        )


@router.post("/anita", response_model=AgentResponse)
@track_time("agent_anita_process")
@count_calls("agent_anita_requests")
async def process_anita_request(
    request: AgentRequest,
    background_tasks: BackgroundTasks,
    current_user: User = Depends(get_current_user),
    rate_limit_tier: RateLimitTier = Depends(get_rate_limit_tier)
):
    """
    Process request with Anita Garibaldi agent.
    
    Anita specializes in pattern analysis and correlation:
    - Spending trends and patterns
    - Organizational behavior analysis
    - Vendor relationship mapping
    - Seasonal pattern detection
    - Efficiency metrics calculation
    """
    try:
        # Create agent context
        context = AgentContext(
            user_id=current_user.id if current_user else "anonymous",
            session_id=str(request.context.get("session_id", "default")),
            request_id=str(request.context.get("request_id", "unknown")),
            metadata={
                "rate_limit_tier": rate_limit_tier.value,
                **request.context
            }
        )
        
        # Initialize Anita agent
        anita = AnitaAgent()
        
        # Process request
        result = await anita.process(
            message=request.query,
            context=context,
            **request.options
        )
        
        return AgentResponse(
            agent="anita_garibaldi",
            result=result.data if hasattr(result, 'data') else {"analysis": str(result)},
            metadata={
                "processing_time": result.metadata.get("processing_time", 0) if hasattr(result, 'metadata') else 0,
                "patterns_found": result.metadata.get("patterns_found", 0) if hasattr(result, 'metadata') else 0,
            },
            success=True,
            message="Pattern analysis completed successfully"
        )
        
    except Exception as e:
        logger.error(f"Anita agent error: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Anita agent processing failed: {str(e)}"
        )


@router.post("/tiradentes", response_model=AgentResponse)
@track_time("agent_tiradentes_process")
@count_calls("agent_tiradentes_requests")
async def process_tiradentes_request(
    request: AgentRequest,
    background_tasks: BackgroundTasks,
    current_user: User = Depends(get_current_user),
    rate_limit_tier: RateLimitTier = Depends(get_rate_limit_tier)
):
    """
    Process request with Tiradentes agent.
    
    Tiradentes specializes in report generation:
    - Executive summaries
    - Detailed investigation reports
    - Multi-format output (JSON, Markdown, HTML)
    - Natural language explanations
    - Actionable recommendations
    """
    try:
        # Create agent context
        context = AgentContext(
            user_id=current_user.id if current_user else "anonymous",
            session_id=str(request.context.get("session_id", "default")),
            request_id=str(request.context.get("request_id", "unknown")),
            metadata={
                "rate_limit_tier": rate_limit_tier.value,
                **request.context
            }
        )
        
        # Initialize Tiradentes agent
        tiradentes = TiradentesAgent()
        
        # Process request
        result = await tiradentes.process(
            message=request.query,
            context=context,
            **request.options
        )
        
        return AgentResponse(
            agent="tiradentes",
            result=result.data if hasattr(result, 'data') else {"report": str(result)},
            metadata={
                "processing_time": result.metadata.get("processing_time", 0) if hasattr(result, 'metadata') else 0,
                "report_format": request.options.get("format", "markdown"),
            },
            success=True,
            message="Report generation completed successfully"
        )
        
    except Exception as e:
        logger.error(f"Tiradentes agent error: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Tiradentes agent processing failed: {str(e)}"
        )


@router.post("/bonifacio", response_model=AgentResponse)
@track_time("agent_bonifacio_process")
@count_calls("agent_bonifacio_requests")
async def process_bonifacio_request(
    request: AgentRequest,
    background_tasks: BackgroundTasks,
    current_user: User = Depends(get_current_user),
    rate_limit_tier: RateLimitTier = Depends(get_rate_limit_tier)
):
    """
    Process request with José Bonifácio agent.
    
    Bonifácio specializes in legal and compliance analysis:
    - Legal framework verification
    - Compliance assessment
    - Regulatory requirement checking
    - Constitutional alignment analysis
    - Legal risk identification
    - Jurisprudence application
    """
    try:
        # Create agent context
        context = AgentContext(
            user_id=current_user.id if current_user else "anonymous",
            session_id=str(request.context.get("session_id", "default")),
            request_id=str(request.context.get("request_id", "unknown")),
            metadata={
                "rate_limit_tier": rate_limit_tier.value,
                **request.context
            }
        )
        
        # Initialize Bonifacio agent
        bonifacio = BonifacioAgent()
        
        # Process request
        result = await bonifacio.process(
            message=request.query,
            context=context,
            **request.options
        )
        
        return AgentResponse(
            agent="jose_bonifacio",
            result=result.data if hasattr(result, 'data') else {"analysis": str(result)},
            metadata={
                "processing_time": result.metadata.get("processing_time", 0) if hasattr(result, 'metadata') else 0,
                "compliance_issues": result.metadata.get("compliance_issues", 0) if hasattr(result, 'metadata') else 0,
                "legal_risks": result.metadata.get("legal_risks", []) if hasattr(result, 'metadata') else [],
            },
            success=True,
            message="Legal and compliance analysis completed successfully"
        )
        
    except Exception as e:
        logger.error(f"Bonifacio agent error: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Bonifacio agent processing failed: {str(e)}"
        )


@router.post("/maria-quiteria", response_model=AgentResponse)
@track_time("agent_maria_quiteria_process")
@count_calls("agent_maria_quiteria_requests")
async def process_maria_quiteria_request(
    request: AgentRequest,
    background_tasks: BackgroundTasks,
    current_user: User = Depends(get_current_user),
    rate_limit_tier: RateLimitTier = Depends(get_rate_limit_tier)
):
    """
    Process request with Maria Quitéria agent.
    
    Maria Quitéria specializes in security auditing and system protection:
    - Security threat detection
    - Vulnerability assessment
    - Compliance verification (LGPD, ISO27001, etc.)
    - Intrusion detection
    - Digital forensics
    - Risk assessment
    - Security monitoring
    """
    try:
        # Create agent context
        context = AgentContext(
            user_id=current_user.id if current_user else "anonymous",
            session_id=str(uuid4()),
            investigation_id=request.metadata.get("investigation_id", str(uuid4()))
        )
        
        # Get or create agent
        from src.agents import MariaQuiteriaAgent
        maria_quiteria = MariaQuiteriaAgent()
        
        # Process request
        result = await maria_quiteria.process(
            message=request.query,
            context=context,
            **request.options
        )
        
        return AgentResponse(
            agent="maria_quiteria",
            result=result.data if hasattr(result, 'data') else {"analysis": str(result)},
            metadata={
                "processing_time": result.metadata.get("processing_time", 0) if hasattr(result, 'metadata') else 0,
                "threats_detected": result.metadata.get("threats_detected", 0) if hasattr(result, 'metadata') else 0,
                "security_score": result.metadata.get("security_score", 0) if hasattr(result, 'metadata') else 0,
            },
            success=True,
            message="Security audit completed successfully"
        )
        
    except Exception as e:
        logger.error(f"Maria Quiteria agent error: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Maria Quiteria agent processing failed: {str(e)}"
        )


@router.get("/status")
async def get_agents_status(
    current_user: User = Depends(get_current_user)
):
    """Get status of all available agents."""
    agents = {
        "zumbi_dos_palmares": {
            "name": "Zumbi dos Palmares",
            "role": "Anomaly Detection Specialist",
            "status": "active",
            "capabilities": [
                "Price anomaly detection",
                "Vendor concentration analysis",
                "Temporal pattern recognition",
                "Contract duplication detection",
                "Payment irregularity identification"
            ]
        },
        "anita_garibaldi": {
            "name": "Anita Garibaldi", 
            "role": "Pattern Analysis Specialist",
            "status": "active",
            "capabilities": [
                "Spending trend analysis",
                "Organizational behavior mapping",
                "Vendor relationship analysis",
                "Seasonal pattern detection",
                "Efficiency metrics calculation"
            ]
        },
        "tiradentes": {
            "name": "Tiradentes",
            "role": "Report Generation Specialist",
            "status": "active",
            "capabilities": [
                "Executive summary generation",
                "Detailed investigation reports",
                "Multi-format output",
                "Natural language explanations",
                "Actionable recommendations"
            ]
        },
        "jose_bonifacio": {
            "name": "José Bonifácio",
            "role": "Legal & Compliance Specialist",
            "status": "active",
            "capabilities": [
                "Legal framework verification",
                "Compliance assessment",
                "Regulatory requirement checking",
                "Constitutional alignment analysis",
                "Legal risk identification"
            ]
        },
        "maria_quiteria": {
            "name": "Maria Quitéria",
            "role": "Security Auditor & System Guardian",
            "status": "active",
            "capabilities": [
                "Security threat detection",
                "Vulnerability assessment",
                "Compliance verification (LGPD, ISO27001)",
                "Intrusion detection",
                "Digital forensics",
                "Risk assessment"
            ]
        }
    }
    
    return {
        "agents": agents,
        "total_active": sum(1 for a in agents.values() if a["status"] == "active"),
        "timestamp": "2025-09-25T14:30:00Z"
    }


@router.get("/")
async def list_agents():
    """List all available agents with their endpoints."""
    return {
        "message": "Cidadão.AI Agent System",
        "version": "2.0.0",
        "agents": [
            {
                "name": "Zumbi dos Palmares",
                "endpoint": "/api/v1/agents/zumbi",
                "description": "Anomaly detection and investigation specialist"
            },
            {
                "name": "Anita Garibaldi",
                "endpoint": "/api/v1/agents/anita",
                "description": "Pattern analysis and correlation specialist"
            },
            {
                "name": "Tiradentes",
                "endpoint": "/api/v1/agents/tiradentes",
                "description": "Report generation and natural language specialist"
            },
            {
                "name": "José Bonifácio",
                "endpoint": "/api/v1/agents/bonifacio",
                "description": "Legal and compliance analysis specialist"
            },
            {
                "name": "Maria Quitéria",
                "endpoint": "/api/v1/agents/maria-quiteria",
                "description": "Security auditing and system protection specialist"
            }
        ]
    }