File size: 30,688 Bytes
824bf31 9730fbc 824bf31 f3b3e7a 824bf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
"""
Sistema de Monitoramento e Observabilidade Enterprise
OpenTelemetry, Prometheus, Distributed Tracing, Health Checks Avançados
"""
import asyncio
import time
import logging
import threading
from typing import Dict, List, Optional, Any, Callable, Union
from datetime import datetime, timedelta
from contextlib import asynccontextmanager
from functools import wraps
from src.core import json_utils
import psutil
import traceback
from enum import Enum
# Try to import OpenTelemetry, use stubs if not available
try:
from opentelemetry import trace, metrics
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.exporter.prometheus import PrometheusMetricReader
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.resources import Resource
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor
from opentelemetry.instrumentation.httpx import HTTPXClientInstrumentor
from opentelemetry.instrumentation.redis import RedisInstrumentor
from opentelemetry.instrumentation.sqlalchemy import SQLAlchemyInstrumentor
OPENTELEMETRY_AVAILABLE = True
except ImportError:
# Use minimal implementation
OPENTELEMETRY_AVAILABLE = False
from src.core.monitoring_minimal import MockTracer as trace
class MockInstrumentor:
@staticmethod
def instrument(*args, **kwargs):
pass
FastAPIInstrumentor = HTTPXClientInstrumentor = RedisInstrumentor = SQLAlchemyInstrumentor = MockInstrumentor
from prometheus_client import Counter, Histogram, Gauge, CollectorRegistry, generate_latest
from pydantic import BaseModel, Field
import structlog
logger = structlog.get_logger(__name__)
class HealthStatus(Enum):
"""Status de saúde dos componentes"""
HEALTHY = "healthy"
DEGRADED = "degraded"
UNHEALTHY = "unhealthy"
UNKNOWN = "unknown"
class MetricType(Enum):
"""Tipos de métricas"""
COUNTER = "counter"
HISTOGRAM = "histogram"
GAUGE = "gauge"
SUMMARY = "summary"
class MonitoringConfig(BaseModel):
"""Configuração do sistema de monitoramento"""
# Service information
service_name: str = "cidadao-ai"
service_version: str = "1.0.0"
environment: str = "production"
# OpenTelemetry
jaeger_endpoint: str = "http://localhost:14268/api/traces"
enable_tracing: bool = True
trace_sample_rate: float = 1.0
# Prometheus
prometheus_port: int = 8000
enable_metrics: bool = True
metrics_path: str = "/metrics"
# Health checks
health_check_interval: int = 30
health_check_timeout: int = 5
enable_deep_health_checks: bool = True
# Performance monitoring
slow_query_threshold_ms: float = 1000.0
high_memory_threshold_mb: float = 1024.0
high_cpu_threshold_percent: float = 80.0
# Alerting
enable_alerting: bool = True
alert_webhook_url: Optional[str] = None
class PerformanceMetrics(BaseModel):
"""Métricas de performance do sistema"""
# System metrics
cpu_usage_percent: float
memory_usage_mb: float
memory_usage_percent: float
disk_usage_percent: float
# Application metrics
active_investigations: int
total_requests: int
failed_requests: int
average_response_time_ms: float
# ML metrics
ml_inference_time_ms: float
anomalies_detected: int
detection_accuracy: float
# Database metrics
db_connections_active: int
db_query_time_ms: float
cache_hit_rate: float
# Timestamp
timestamp: datetime = Field(default_factory=datetime.utcnow)
class AlertSeverity(Enum):
"""Severidade dos alertas"""
INFO = "info"
WARNING = "warning"
ERROR = "error"
CRITICAL = "critical"
class Alert(BaseModel):
"""Modelo de alerta"""
id: str
title: str
description: str
severity: AlertSeverity
component: str
metric_name: str
metric_value: float
threshold: float
timestamp: datetime = Field(default_factory=datetime.utcnow)
resolved: bool = False
resolution_time: Optional[datetime] = None
class HealthCheck(BaseModel):
"""Resultado de health check"""
component: str
status: HealthStatus
details: Dict[str, Any] = Field(default_factory=dict)
latency_ms: Optional[float] = None
last_check: datetime = Field(default_factory=datetime.utcnow)
error_message: Optional[str] = None
class ObservabilityManager:
"""Gerenciador avançado de observabilidade e monitoramento"""
def __init__(self, config: MonitoringConfig):
self.config = config
self.tracer = None
self.meter = None
self.registry = CollectorRegistry()
# Health checks
self.health_checks: Dict[str, HealthCheck] = {}
self.health_check_functions: Dict[str, Callable] = {}
# Metrics
self.metrics: Dict[str, Any] = {}
self.performance_history: List[PerformanceMetrics] = []
# Alerts
self.active_alerts: Dict[str, Alert] = {}
self.alert_history: List[Alert] = []
# Performance tracking
self.request_times: List[float] = []
self.ml_inference_times: List[float] = []
self._monitoring_task = None
self._initialized = False
async def initialize(self) -> bool:
"""Inicializar sistema de monitoramento"""
try:
logger.info("Inicializando sistema de observabilidade...")
# Setup OpenTelemetry
await self._setup_tracing()
# Setup Prometheus metrics
await self._setup_metrics()
# Setup health checks
await self._setup_health_checks()
# Start monitoring loop
await self._start_monitoring_loop()
self._initialized = True
logger.info("✅ Sistema de observabilidade inicializado")
return True
except Exception as e:
logger.error(f"❌ Falha na inicialização do monitoramento: {e}")
return False
async def _setup_tracing(self):
"""Configurar distributed tracing"""
if not self.config.enable_tracing:
return
# Resource information
resource = Resource.create({
"service.name": self.config.service_name,
"service.version": self.config.service_version,
"deployment.environment": self.config.environment
})
# Tracer provider
trace.set_tracer_provider(TracerProvider(resource=resource))
# Jaeger exporter
jaeger_exporter = JaegerExporter(
endpoint=self.config.jaeger_endpoint
)
# Span processor
span_processor = BatchSpanProcessor(jaeger_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
# Get tracer
self.tracer = trace.get_tracer(__name__)
# Auto-instrumentation
FastAPIInstrumentor.instrument()
HTTPXClientInstrumentor.instrument()
RedisInstrumentor.instrument()
SQLAlchemyInstrumentor.instrument()
logger.info("✅ Distributed tracing configurado")
async def _setup_metrics(self):
"""Configurar métricas Prometheus"""
if not self.config.enable_metrics:
return
# Prometheus metrics
self.metrics = {
# HTTP metrics
"http_requests_total": Counter(
"http_requests_total",
"Total HTTP requests",
["method", "endpoint", "status"],
registry=self.registry
),
"http_request_duration": Histogram(
"http_request_duration_seconds",
"HTTP request duration",
["method", "endpoint"],
registry=self.registry
),
# ML metrics
"ml_inference_duration": Histogram(
"ml_inference_duration_seconds",
"ML inference duration",
["model", "task"],
registry=self.registry
),
"anomalies_detected_total": Counter(
"anomalies_detected_total",
"Total anomalies detected",
["severity"],
registry=self.registry
),
# System metrics
"cpu_usage_percent": Gauge(
"cpu_usage_percent",
"CPU usage percentage",
registry=self.registry
),
"memory_usage_bytes": Gauge(
"memory_usage_bytes",
"Memory usage in bytes",
registry=self.registry
),
# Investigation metrics
"active_investigations": Gauge(
"active_investigations",
"Number of active investigations",
registry=self.registry
),
"investigation_duration": Histogram(
"investigation_duration_seconds",
"Investigation duration",
["status"],
registry=self.registry
),
# Database metrics
"db_connections_active": Gauge(
"db_connections_active",
"Active database connections",
registry=self.registry
),
"cache_hit_rate": Gauge(
"cache_hit_rate",
"Cache hit rate",
["cache_type"],
registry=self.registry
)
}
logger.info("✅ Métricas Prometheus configuradas")
async def _setup_health_checks(self):
"""Configurar health checks"""
# Register default health checks
self.register_health_check("system", self._check_system_health)
self.register_health_check("database", self._check_database_health)
self.register_health_check("redis", self._check_redis_health)
self.register_health_check("ml_models", self._check_ml_models_health)
logger.info("✅ Health checks configurados")
async def _start_monitoring_loop(self):
"""Iniciar loop de monitoramento contínuo"""
async def monitoring_loop():
while True:
try:
await self._collect_performance_metrics()
await self._run_health_checks()
await self._check_alerts()
await asyncio.sleep(self.config.health_check_interval)
except Exception as e:
logger.error(f"❌ Erro no loop de monitoramento: {e}")
await asyncio.sleep(5)
self._monitoring_task = asyncio.create_task(monitoring_loop())
logger.info("✅ Loop de monitoramento iniciado")
def register_health_check(self, name: str, check_function: Callable):
"""Registrar função de health check"""
self.health_check_functions[name] = check_function
logger.info(f"✅ Health check '{name}' registrado")
async def _run_health_checks(self):
"""Executar todos os health checks"""
for name, check_function in self.health_check_functions.items():
try:
start_time = time.time()
result = await check_function()
latency = (time.time() - start_time) * 1000
if isinstance(result, dict):
status = result.get("status", HealthStatus.UNKNOWN)
details = result.get("details", {})
error_message = result.get("error")
else:
status = HealthStatus.HEALTHY if result else HealthStatus.UNHEALTHY
details = {}
error_message = None
self.health_checks[name] = HealthCheck(
component=name,
status=status,
details=details,
latency_ms=round(latency, 2),
error_message=error_message
)
except Exception as e:
self.health_checks[name] = HealthCheck(
component=name,
status=HealthStatus.UNHEALTHY,
error_message=str(e),
latency_ms=None
)
async def _check_system_health(self) -> Dict[str, Any]:
"""Health check do sistema"""
try:
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
# Update metrics
if "cpu_usage_percent" in self.metrics:
self.metrics["cpu_usage_percent"].set(cpu_percent)
if "memory_usage_bytes" in self.metrics:
self.metrics["memory_usage_bytes"].set(memory.used)
# Determine status
status = HealthStatus.HEALTHY
if cpu_percent > self.config.high_cpu_threshold_percent:
status = HealthStatus.DEGRADED
if memory.percent > 90:
status = HealthStatus.UNHEALTHY
return {
"status": status,
"details": {
"cpu_percent": cpu_percent,
"memory_percent": memory.percent,
"disk_percent": disk.percent,
"load_average": psutil.getloadavg() if hasattr(psutil, 'getloadavg') else None
}
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _check_database_health(self) -> Dict[str, Any]:
"""Health check do banco de dados"""
try:
# Import here to avoid circular dependency
from .database import get_database_manager
db = await get_database_manager()
health_status = await db.get_health_status()
# Determine overall status
pg_healthy = health_status["postgresql"]["status"] == "healthy"
redis_healthy = health_status["redis"]["status"] == "healthy"
if pg_healthy and redis_healthy:
status = HealthStatus.HEALTHY
elif pg_healthy or redis_healthy:
status = HealthStatus.DEGRADED
else:
status = HealthStatus.UNHEALTHY
return {
"status": status,
"details": health_status
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _check_redis_health(self) -> Dict[str, Any]:
"""Health check específico do Redis"""
try:
from .database import get_database_manager
db = await get_database_manager()
start_time = time.time()
await db.redis_cluster.ping()
latency = (time.time() - start_time) * 1000
status = HealthStatus.HEALTHY if latency < 100 else HealthStatus.DEGRADED
return {
"status": status,
"details": {
"latency_ms": round(latency, 2),
"connection_pool": "active"
}
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _check_ml_models_health(self) -> Dict[str, Any]:
"""Health check dos modelos ML"""
try:
# Check if Cidadão.AI is available
from ..ml.hf_integration import get_cidadao_manager
manager = get_cidadao_manager()
model_info = manager.get_model_info()
if model_info.get("status") == "loaded":
status = HealthStatus.HEALTHY
else:
status = HealthStatus.UNHEALTHY
return {
"status": status,
"details": model_info
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _collect_performance_metrics(self):
"""Coletar métricas de performance"""
try:
# System metrics
cpu_percent = psutil.cpu_percent()
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
# Calculate averages
avg_response_time = sum(self.request_times[-100:]) / len(self.request_times[-100:]) if self.request_times else 0
avg_ml_time = sum(self.ml_inference_times[-50:]) / len(self.ml_inference_times[-50:]) if self.ml_inference_times else 0
# Create metrics object
metrics = PerformanceMetrics(
cpu_usage_percent=cpu_percent,
memory_usage_mb=memory.used / (1024 * 1024),
memory_usage_percent=memory.percent,
disk_usage_percent=disk.percent,
active_investigations=len(getattr(self, '_active_investigations', [])),
total_requests=len(self.request_times),
failed_requests=0, # TODO: track failed requests
average_response_time_ms=avg_response_time * 1000,
ml_inference_time_ms=avg_ml_time * 1000,
anomalies_detected=0, # TODO: track anomalies
detection_accuracy=0.0, # TODO: track accuracy
db_connections_active=0, # TODO: get from DB manager
db_query_time_ms=0.0, # TODO: track query time
cache_hit_rate=0.0 # TODO: get from cache manager
)
# Store metrics
self.performance_history.append(metrics)
# Keep only last 1000 metrics
if len(self.performance_history) > 1000:
self.performance_history = self.performance_history[-1000:]
except Exception as e:
logger.error(f"❌ Erro ao coletar métricas: {e}")
async def _check_alerts(self):
"""Verificar condições de alerta"""
if not self.performance_history:
return
latest_metrics = self.performance_history[-1]
# CPU alert
if latest_metrics.cpu_usage_percent > self.config.high_cpu_threshold_percent:
await self._trigger_alert(
"high_cpu",
"High CPU Usage",
f"CPU usage is {latest_metrics.cpu_usage_percent:.1f}%",
AlertSeverity.WARNING,
"system",
"cpu_usage_percent",
latest_metrics.cpu_usage_percent,
self.config.high_cpu_threshold_percent
)
# Memory alert
if latest_metrics.memory_usage_percent > 85:
await self._trigger_alert(
"high_memory",
"High Memory Usage",
f"Memory usage is {latest_metrics.memory_usage_percent:.1f}%",
AlertSeverity.ERROR,
"system",
"memory_usage_percent",
latest_metrics.memory_usage_percent,
85.0
)
# Response time alert
if latest_metrics.average_response_time_ms > self.config.slow_query_threshold_ms:
await self._trigger_alert(
"slow_response",
"Slow Response Time",
f"Average response time is {latest_metrics.average_response_time_ms:.1f}ms",
AlertSeverity.WARNING,
"api",
"average_response_time_ms",
latest_metrics.average_response_time_ms,
self.config.slow_query_threshold_ms
)
async def _trigger_alert(self, alert_id: str, title: str, description: str,
severity: AlertSeverity, component: str,
metric_name: str, metric_value: float, threshold: float):
"""Disparar alerta"""
# Check if alert already active
if alert_id in self.active_alerts:
return
alert = Alert(
id=alert_id,
title=title,
description=description,
severity=severity,
component=component,
metric_name=metric_name,
metric_value=metric_value,
threshold=threshold
)
self.active_alerts[alert_id] = alert
self.alert_history.append(alert)
logger.warning(f"🚨 ALERTA: {title} - {description}")
# Send webhook if configured
if self.config.alert_webhook_url:
await self._send_alert_webhook(alert)
async def _send_alert_webhook(self, alert: Alert):
"""Enviar alerta via webhook"""
try:
import httpx
payload = {
"alert_id": alert.id,
"title": alert.title,
"description": alert.description,
"severity": alert.severity.value,
"component": alert.component,
"timestamp": alert.timestamp.isoformat(),
"metric": {
"name": alert.metric_name,
"value": alert.metric_value,
"threshold": alert.threshold
}
}
async with httpx.AsyncClient() as client:
response = await client.post(
self.config.alert_webhook_url,
json=payload,
timeout=10.0
)
if response.status_code == 200:
logger.info(f"✅ Alerta {alert.id} enviado via webhook")
else:
logger.error(f"❌ Falha ao enviar alerta via webhook: {response.status_code}")
except Exception as e:
logger.error(f"❌ Erro ao enviar webhook: {e}")
@asynccontextmanager
async def trace_span(self, name: str, attributes: Dict[str, Any] = None):
"""Context manager para criar spans de tracing"""
if not self.tracer:
yield None
return
with self.tracer.start_as_current_span(name) as span:
if attributes:
for key, value in attributes.items():
span.set_attribute(key, value)
yield span
def track_request_time(self, duration_seconds: float):
"""Rastrear tempo de request"""
self.request_times.append(duration_seconds)
# Keep only last 1000
if len(self.request_times) > 1000:
self.request_times = self.request_times[-1000:]
def track_ml_inference_time(self, duration_seconds: float, model: str = "cidadao-gpt"):
"""Rastrear tempo de inferência ML"""
self.ml_inference_times.append(duration_seconds)
# Update Prometheus metric
if "ml_inference_duration" in self.metrics:
self.metrics["ml_inference_duration"].labels(
model=model,
task="inference"
).observe(duration_seconds)
# Keep only last 500
if len(self.ml_inference_times) > 500:
self.ml_inference_times = self.ml_inference_times[-500:]
def increment_anomaly_count(self, severity: str = "medium"):
"""Incrementar contador de anomalias"""
if "anomalies_detected_total" in self.metrics:
self.metrics["anomalies_detected_total"].labels(severity=severity).inc()
async def get_health_summary(self) -> Dict[str, Any]:
"""Obter resumo de saúde do sistema"""
overall_status = HealthStatus.HEALTHY
# Check individual components
for component, health in self.health_checks.items():
if health.status == HealthStatus.UNHEALTHY:
overall_status = HealthStatus.UNHEALTHY
break
elif health.status == HealthStatus.DEGRADED and overall_status == HealthStatus.HEALTHY:
overall_status = HealthStatus.DEGRADED
return {
"overall_status": overall_status.value,
"components": {name: health.dict() for name, health in self.health_checks.items()},
"active_alerts": len(self.active_alerts),
"last_check": datetime.utcnow().isoformat(),
"uptime_seconds": time.time() - getattr(self, '_start_time', time.time())
}
async def get_metrics_summary(self) -> Dict[str, Any]:
"""Obter resumo de métricas"""
if not self.performance_history:
return {"error": "No metrics available"}
latest = self.performance_history[-1]
return {
"timestamp": latest.timestamp.isoformat(),
"system": {
"cpu_usage_percent": latest.cpu_usage_percent,
"memory_usage_mb": latest.memory_usage_mb,
"memory_usage_percent": latest.memory_usage_percent,
"disk_usage_percent": latest.disk_usage_percent
},
"application": {
"active_investigations": latest.active_investigations,
"total_requests": latest.total_requests,
"average_response_time_ms": latest.average_response_time_ms,
"ml_inference_time_ms": latest.ml_inference_time_ms
},
"alerts": {
"active_count": len(self.active_alerts),
"total_count": len(self.alert_history)
}
}
def get_prometheus_metrics(self) -> str:
"""Obter métricas no formato Prometheus"""
return generate_latest(self.registry)
async def cleanup(self):
"""Cleanup de recursos"""
try:
if self._monitoring_task:
self._monitoring_task.cancel()
try:
await self._monitoring_task
except asyncio.CancelledError:
pass
logger.info("✅ Cleanup do sistema de monitoramento concluído")
except Exception as e:
logger.error(f"❌ Erro no cleanup: {e}")
# Singleton instance
_monitoring_manager: Optional[ObservabilityManager] = None
async def get_monitoring_manager() -> ObservabilityManager:
"""Obter instância singleton do monitoring manager"""
global _monitoring_manager
if _monitoring_manager is None or not _monitoring_manager._initialized:
config = MonitoringConfig()
_monitoring_manager = ObservabilityManager(config)
await _monitoring_manager.initialize()
return _monitoring_manager
def trace_async(span_name: str = None, attributes: Dict[str, Any] = None):
"""Decorator para tracing automático de funções async"""
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
monitoring = await get_monitoring_manager()
name = span_name or f"{func.__module__}.{func.__name__}"
async with monitoring.trace_span(name, attributes) as span:
try:
start_time = time.time()
result = await func(*args, **kwargs)
duration = time.time() - start_time
if span:
span.set_attribute("duration_seconds", duration)
span.set_attribute("success", True)
return result
except Exception as e:
if span:
span.set_attribute("error", True)
span.set_attribute("error_message", str(e))
raise
return wrapper
return decorator
async def cleanup_monitoring():
"""Cleanup global do sistema de monitoramento"""
global _monitoring_manager
if _monitoring_manager:
await _monitoring_manager.cleanup()
_monitoring_manager = None
if __name__ == "__main__":
# Teste do sistema
import asyncio
async def test_monitoring_system():
"""Teste completo do sistema de monitoramento"""
print("🧪 Testando sistema de monitoramento...")
# Inicializar
monitoring = await get_monitoring_manager()
# Simulate some activity
monitoring.track_request_time(0.15)
monitoring.track_ml_inference_time(0.5)
monitoring.increment_anomaly_count("high")
# Wait for health checks
await asyncio.sleep(2)
# Get health summary
health = await monitoring.get_health_summary()
print(f"✅ Health summary: {health['overall_status']}")
# Get metrics summary
metrics = await monitoring.get_metrics_summary()
print(f"✅ Metrics summary: {metrics.get('system', {}).get('cpu_usage_percent', 'N/A')}% CPU")
# Test tracing
@trace_async("test_function")
async def test_traced_function():
await asyncio.sleep(0.1)
return "success"
result = await test_traced_function()
print(f"✅ Traced function result: {result}")
# Cleanup
await cleanup_monitoring()
print("✅ Teste concluído!")
asyncio.run(test_monitoring_system()) |