File size: 27,460 Bytes
824bf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
# 🧠 Cidadão.AI Machine Learning Pipeline
## 📋 Overview
The **Machine Learning Pipeline** powers the analytical core of Cidadão.AI with **advanced anomaly detection**, **pattern recognition**, and **explainable AI** capabilities. Built with **scikit-learn**, **TensorFlow**, and **statistical analysis** tools to provide transparent, interpretable insights into government data.
## 🏗️ Architecture
```
src/ml/
├── models.py # Core ML models and algorithms
├── anomaly_detector.py # Anomaly detection engine
├── pattern_analyzer.py # Pattern recognition system
├── spectral_analyzer.py # Frequency domain analysis
├── data_pipeline.py # Data preprocessing pipeline
├── training_pipeline.py # Model training orchestration
├── advanced_pipeline.py # Advanced ML algorithms
├── cidadao_model.py # Custom Cidadão.AI model
├── hf_cidadao_model.py # HuggingFace integration
├── model_api.py # Model serving API
├── hf_integration.py # HuggingFace deployment
└── transparency_benchmark.py # Model evaluation benchmarks
```
## 🔬 Core ML Capabilities
### 1. **Anomaly Detection Engine** (anomaly_detector.py)
#### Statistical Anomaly Detection
```python
class AnomalyDetector:
"""
Multi-algorithm anomaly detection for government transparency data
Methods:
- Statistical outliers (Z-score, IQR, Modified Z-score)
- Isolation Forest for high-dimensional data
- One-Class SVM for complex patterns
- Local Outlier Factor for density-based detection
- Time series anomalies with seasonal decomposition
"""
# Price anomaly detection
def detect_price_anomalies(
self,
contracts: List[Contract],
threshold: float = 2.5
) -> List[PriceAnomaly]:
"""
Detect price anomalies using statistical methods
Algorithm:
1. Group contracts by category/type
2. Calculate mean and standard deviation
3. Flag contracts beyond threshold * std_dev
4. Apply contextual filters (contract size, organization type)
"""
# Vendor concentration analysis
def detect_vendor_concentration(
self,
contracts: List[Contract],
concentration_threshold: float = 0.7
) -> List[VendorConcentrationAnomaly]:
"""
Detect monopolistic vendor patterns
Algorithm:
1. Calculate vendor market share by organization
2. Apply Herfindahl-Hirschman Index (HHI)
3. Flag organizations with high vendor concentration
4. Analyze temporal patterns for sudden changes
"""
```
#### Advanced Anomaly Types
```python
# Anomaly classification system
class AnomalyType(Enum):
PRICE_OUTLIER = "price_outlier" # Statistical price deviation
VENDOR_CONCENTRATION = "vendor_concentration" # Market concentration
TEMPORAL_SUSPICION = "temporal_suspicion" # Timing irregularities
DUPLICATE_CONTRACT = "duplicate_contract" # Contract similarity
PAYMENT_IRREGULARITY = "payment_irregularity" # Payment pattern anomaly
SEASONAL_DEVIATION = "seasonal_deviation" # Seasonal pattern break
NETWORK_ANOMALY = "network_anomaly" # Graph-based anomalies
# Severity classification
class AnomalySeverity(Enum):
LOW = "low" # Minor deviations, may be normal
MEDIUM = "medium" # Noticeable patterns requiring attention
HIGH = "high" # Strong indicators of irregularities
CRITICAL = "critical" # Severe anomalies requiring immediate action
```
### 2. **Pattern Analysis System** (pattern_analyzer.py)
#### Time Series Analysis
```python
class PatternAnalyzer:
"""
Advanced pattern recognition for government spending patterns
Capabilities:
- Seasonal decomposition (trend, seasonal, residual)
- Spectral analysis using FFT
- Cross-correlation analysis between organizations
- Regime change detection
- Forecasting with uncertainty quantification
"""
def analyze_spending_trends(
self,
expenses: List[Expense],
decomposition_model: str = "additive"
) -> TrendAnalysis:
"""
Decompose spending into trend, seasonal, and irregular components
Algorithm:
1. Time series preprocessing and gap filling
2. Seasonal-Trend decomposition using LOESS (STL)
3. Trend change point detection
4. Seasonal pattern stability analysis
5. Residual anomaly identification
"""
def detect_spending_regime_changes(
self,
time_series: np.ndarray,
method: str = "cusum"
) -> List[RegimeChange]:
"""
Detect structural breaks in spending patterns
Methods:
- CUSUM (Cumulative Sum) control charts
- Bayesian change point detection
- Structural break tests (Chow test, Quandt-Andrews)
"""
```
#### Cross-Organizational Analysis
```python
def analyze_cross_organizational_patterns(
self,
organizations: List[str],
time_window: str = "monthly"
) -> CrossOrgAnalysis:
"""
Identify patterns across government organizations
Features:
- Spending correlation analysis
- Synchronized timing detection
- Resource competition analysis
- Coordination pattern identification
"""
# Calculate cross-correlation matrix
correlation_matrix = np.corrcoef([
org_spending_series for org in organizations
])
# Detect synchronized events
synchronized_events = self._detect_synchronized_spending(
organizations, threshold=0.8
)
return CrossOrgAnalysis(
correlation_matrix=correlation_matrix,
synchronized_events=synchronized_events,
coordination_score=self._calculate_coordination_score(correlation_matrix)
)
```
### 3. **Spectral Analysis Engine** (spectral_analyzer.py)
#### Frequency Domain Analysis
```python
class SpectralAnalyzer:
"""
Frequency domain analysis for detecting periodic patterns
Applications:
- End-of-year spending rush detection
- Electoral cycle influence analysis
- Budget cycle pattern identification
- Periodic corruption pattern detection
"""
def analyze_spending_spectrum(
self,
spending_series: np.ndarray,
sampling_rate: str = "monthly"
) -> SpectralAnalysis:
"""
Perform FFT analysis on spending time series
Algorithm:
1. Preprocessing: detrending, windowing
2. Fast Fourier Transform (FFT)
3. Power spectral density estimation
4. Peak detection in frequency domain
5. Periodic pattern significance testing
"""
# Remove trend and apply windowing
detrended = signal.detrend(spending_series)
windowed = detrended * signal.windows.hann(len(detrended))
# FFT analysis
frequencies = np.fft.fftfreq(len(windowed))
fft_result = np.fft.fft(windowed)
power_spectrum = np.abs(fft_result) ** 2
# Detect significant peaks
peaks, properties = signal.find_peaks(
power_spectrum,
height=np.mean(power_spectrum) + 2 * np.std(power_spectrum),
distance=10
)
return SpectralAnalysis(
frequencies=frequencies[peaks],
power_spectrum=power_spectrum,
significant_periods=1 / frequencies[peaks],
seasonality_strength=self._calculate_seasonality_strength(power_spectrum)
)
```
### 4. **Data Processing Pipeline** (data_pipeline.py)
#### Advanced Data Preprocessing
```python
class DataPipeline:
"""
Comprehensive data preprocessing for ML algorithms
Features:
- Missing value imputation with multiple strategies
- Outlier detection and treatment
- Feature engineering for government data
- Text preprocessing for contract descriptions
- Temporal feature extraction
"""
def preprocess_contracts(
self,
contracts: List[Contract]
) -> ProcessedDataset:
"""
Transform raw contract data into ML-ready features
Pipeline:
1. Data cleaning and validation
2. Missing value imputation
3. Categorical encoding
4. Numerical scaling and normalization
5. Feature engineering
6. Dimensionality reduction if needed
"""
# Extract features
features = self._extract_contract_features(contracts)
# Handle missing values
features_imputed = self._impute_missing_values(features)
# Scale numerical features
features_scaled = self._scale_features(features_imputed)
# Engineer domain-specific features
features_engineered = self._engineer_transparency_features(features_scaled)
return ProcessedDataset(
features=features_engineered,
feature_names=self._get_feature_names(),
preprocessing_metadata=self._get_preprocessing_metadata()
)
def _extract_contract_features(self, contracts: List[Contract]) -> np.ndarray:
"""Extract numerical features from contract data"""
features = []
for contract in contracts:
contract_features = [
# Financial features
float(contract.valor_inicial or 0),
float(contract.valor_global or 0),
# Temporal features
self._extract_temporal_features(contract.data_assinatura),
# Categorical features (encoded)
self._encode_modality(contract.modalidade_contratacao),
self._encode_organization(contract.orgao.codigo if contract.orgao else None),
# Text features (TF-IDF of contract object)
*self._extract_text_features(contract.objeto),
# Derived features
self._calculate_contract_duration(contract),
self._calculate_value_per_day(contract),
self._get_vendor_risk_score(contract.fornecedor),
]
features.append(contract_features)
return np.array(features)
```
### 5. **Custom Cidadão.AI Model** (cidadao_model.py)
#### Specialized Transparency Analysis Model
```python
class CidadaoAIModel:
"""
Custom model specialized for Brazilian government transparency analysis
Architecture:
- Multi-task learning for various anomaly types
- Attention mechanisms for important features
- Interpretability through SHAP values
- Uncertainty quantification
- Brazilian government domain knowledge integration
"""
def __init__(self):
self.anomaly_detector = self._build_anomaly_detector()
self.pattern_classifier = self._build_pattern_classifier()
self.risk_scorer = self._build_risk_scorer()
self.explainer = self._build_explainer()
def _build_anomaly_detector(self) -> tf.keras.Model:
"""Build neural network for anomaly detection"""
inputs = tf.keras.Input(shape=(self.n_features,))
# Encoder
encoded = tf.keras.layers.Dense(128, activation='relu')(inputs)
encoded = tf.keras.layers.Dropout(0.2)(encoded)
encoded = tf.keras.layers.Dense(64, activation='relu')(encoded)
encoded = tf.keras.layers.Dropout(0.2)(encoded)
encoded = tf.keras.layers.Dense(32, activation='relu')(encoded)
# Decoder (autoencoder for anomaly detection)
decoded = tf.keras.layers.Dense(64, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(128, activation='relu')(decoded)
decoded = tf.keras.layers.Dense(self.n_features, activation='linear')(decoded)
# Anomaly score output
anomaly_score = tf.keras.layers.Dense(1, activation='sigmoid', name='anomaly_score')(encoded)
model = tf.keras.Model(inputs=inputs, outputs=[decoded, anomaly_score])
return model
def predict_anomalies(
self,
data: np.ndarray,
return_explanations: bool = True
) -> AnomalyPrediction:
"""
Predict anomalies with explanations
Returns:
- Anomaly scores (0-1)
- Anomaly classifications
- Feature importance (SHAP values)
- Confidence intervals
"""
# Get predictions
reconstructed, anomaly_scores = self.anomaly_detector.predict(data)
# Calculate reconstruction error
reconstruction_error = np.mean((data - reconstructed) ** 2, axis=1)
# Classify anomalies
anomaly_labels = (anomaly_scores > self.anomaly_threshold).astype(int)
# Generate explanations if requested
explanations = None
if return_explanations:
explanations = self.explainer.explain_predictions(data, anomaly_scores)
return AnomalyPrediction(
anomaly_scores=anomaly_scores,
anomaly_labels=anomaly_labels,
reconstruction_error=reconstruction_error,
explanations=explanations,
confidence=self._calculate_confidence(anomaly_scores)
)
```
### 6. **Model Interpretability** (explainer.py)
#### SHAP-based Explanations
```python
class TransparencyExplainer:
"""
Explainable AI for transparency analysis results
Methods:
- SHAP (SHapley Additive exPlanations) values
- LIME (Local Interpretable Model-agnostic Explanations)
- Feature importance analysis
- Decision boundary visualization
"""
def explain_anomaly_prediction(
self,
model: Any,
data: np.ndarray,
prediction_index: int
) -> AnomalyExplanation:
"""
Generate human-readable explanations for anomaly predictions
Returns:
- Feature contributions to the prediction
- Natural language explanation
- Visualization data for charts
- Confidence intervals
"""
# Calculate SHAP values
explainer = shap.DeepExplainer(model, data[:100]) # Background data
shap_values = explainer.shap_values(data[prediction_index:prediction_index+1])
# Get feature names and values
feature_names = self.get_feature_names()
feature_values = data[prediction_index]
# Sort by importance
importance_indices = np.argsort(np.abs(shap_values[0]))[::-1]
# Generate natural language explanation
explanation_text = self._generate_explanation_text(
shap_values[0],
feature_names,
feature_values,
importance_indices[:5] # Top 5 features
)
return AnomalyExplanation(
shap_values=shap_values[0],
feature_names=feature_names,
feature_values=feature_values,
explanation_text=explanation_text,
top_features=importance_indices[:10]
)
def _generate_explanation_text(
self,
shap_values: np.ndarray,
feature_names: List[str],
feature_values: np.ndarray,
top_indices: List[int]
) -> str:
"""Generate human-readable explanation"""
explanations = []
for idx in top_indices:
feature_name = feature_names[idx]
feature_value = feature_values[idx]
shap_value = shap_values[idx]
if shap_value > 0:
direction = "increases"
else:
direction = "decreases"
explanation = f"The {feature_name} value of {feature_value:.2f} {direction} the anomaly score by {abs(shap_value):.3f}"
explanations.append(explanation)
return ". ".join(explanations) + "."
```
## 📊 Model Training & Evaluation
### Training Pipeline (training_pipeline.py)
#### Automated Model Training
```python
class ModelTrainingPipeline:
"""
Automated training pipeline for transparency analysis models
Features:
- Cross-validation with time series splits
- Hyperparameter optimization
- Model selection and ensemble methods
- Performance monitoring and logging
- Automated model deployment
"""
def train_anomaly_detection_model(
self,
training_data: ProcessedDataset,
validation_split: float = 0.2,
hyperparameter_search: bool = True
) -> TrainingResult:
"""
Train anomaly detection model with optimization
Pipeline:
1. Data splitting with temporal considerations
2. Hyperparameter optimization using Optuna
3. Model training with early stopping
4. Cross-validation evaluation
5. Model interpretation and validation
"""
# Split data maintaining temporal order
train_data, val_data = self._temporal_split(training_data, validation_split)
# Hyperparameter optimization
if hyperparameter_search:
best_params = self._optimize_hyperparameters(train_data, val_data)
else:
best_params = self.default_params
# Train final model
model = self._train_model(train_data, best_params)
# Evaluate model
evaluation_results = self._evaluate_model(model, val_data)
# Generate model interpretation
interpretation = self._interpret_model(model, val_data)
return TrainingResult(
model=model,
parameters=best_params,
evaluation=evaluation_results,
interpretation=interpretation,
training_metadata=self._get_training_metadata()
)
```
### Model Evaluation Metrics
```python
class TransparencyMetrics:
"""
Specialized metrics for transparency analysis evaluation
Metrics:
- Precision/Recall for anomaly detection
- F1-score with class imbalance handling
- Area Under ROC Curve (AUC-ROC)
- Area Under Precision-Recall Curve (AUC-PR)
- False Positive Rate at operational thresholds
- Coverage: percentage of true anomalies detected
"""
def calculate_anomaly_detection_metrics(
self,
y_true: np.ndarray,
y_pred_proba: np.ndarray,
threshold: float = 0.5
) -> Dict[str, float]:
"""Calculate comprehensive metrics for anomaly detection"""
y_pred = (y_pred_proba > threshold).astype(int)
# Basic classification metrics
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
# ROC metrics
auc_roc = roc_auc_score(y_true, y_pred_proba)
auc_pr = average_precision_score(y_true, y_pred_proba)
# Cost-sensitive metrics
false_positive_rate = self._calculate_fpr(y_true, y_pred)
false_negative_rate = self._calculate_fnr(y_true, y_pred)
# Domain-specific metrics
coverage = self._calculate_coverage(y_true, y_pred)
efficiency = self._calculate_efficiency(y_true, y_pred)
return {
'precision': precision,
'recall': recall,
'f1_score': f1,
'auc_roc': auc_roc,
'auc_pr': auc_pr,
'false_positive_rate': false_positive_rate,
'false_negative_rate': false_negative_rate,
'coverage': coverage,
'efficiency': efficiency
}
```
## 🚀 Model Deployment
### HuggingFace Integration (hf_integration.py)
#### Model Publishing to HuggingFace Hub
```python
class HuggingFaceIntegration:
"""
Integration with HuggingFace Hub for model sharing and deployment
Features:
- Model uploading with metadata
- Automatic model card generation
- Version control and model registry
- Inference API integration
- Community model sharing
"""
def upload_model_to_hub(
self,
model: tf.keras.Model,
model_name: str,
description: str,
metrics: Dict[str, float]
) -> str:
"""
Upload trained model to HuggingFace Hub
Process:
1. Convert model to HuggingFace format
2. Generate model card with metrics and description
3. Package preprocessing pipelines
4. Upload to Hub with version tags
5. Set up inference API
"""
# Convert to HuggingFace format
hf_model = self._convert_to_hf_format(model)
# Generate model card
model_card = self._generate_model_card(
model_name, description, metrics
)
# Upload to hub
repo_url = hf_model.push_to_hub(
model_name,
commit_message=f"Upload {model_name} v{self.version}",
model_card=model_card
)
return repo_url
```
### API Serving (model_api.py)
#### FastAPI Model Serving
```python
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
app = FastAPI(title="Cidadão.AI ML API")
class PredictionRequest(BaseModel):
contracts: List[Dict[str, Any]]
include_explanations: bool = True
anomaly_threshold: float = 0.5
class PredictionResponse(BaseModel):
anomalies: List[AnomalyResult]
model_version: str
processing_time_ms: float
confidence_score: float
@app.post("/predict/anomalies", response_model=PredictionResponse)
async def predict_anomalies(request: PredictionRequest):
"""
Predict anomalies in government contracts
Returns:
- Anomaly predictions with scores
- Explanations for each prediction
- Model metadata and performance metrics
"""
start_time = time.time()
# Load model (cached)
model = await get_cached_model()
# Preprocess data
processed_data = preprocess_contracts(request.contracts)
# Make predictions
predictions = model.predict_anomalies(
processed_data,
threshold=request.anomaly_threshold,
return_explanations=request.include_explanations
)
processing_time = (time.time() - start_time) * 1000
return PredictionResponse(
anomalies=predictions.anomalies,
model_version=model.version,
processing_time_ms=processing_time,
confidence_score=predictions.overall_confidence
)
```
## 📊 Performance Benchmarks
### Transparency Benchmark Suite (transparency_benchmark.py)
#### Comprehensive Model Evaluation
```python
class TransparencyBenchmark:
"""
Benchmark suite for transparency analysis models
Tests:
- Synthetic anomaly detection
- Real-world case study validation
- Cross-organization generalization
- Temporal stability assessment
- Interpretability quality metrics
"""
def run_comprehensive_benchmark(
self,
model: Any,
test_datasets: List[str]
) -> BenchmarkResults:
"""
Run complete benchmark suite on model
Benchmarks:
1. Synthetic data with known anomalies
2. Historical case studies with verified outcomes
3. Cross-validation across different organizations
4. Temporal robustness testing
5. Adversarial robustness evaluation
"""
results = {}
for dataset_name in test_datasets:
dataset = self._load_benchmark_dataset(dataset_name)
# Run predictions
predictions = model.predict(dataset.X)
# Calculate metrics
metrics = self._calculate_metrics(dataset.y, predictions)
# Test interpretability
interpretability_score = self._test_interpretability(
model, dataset.X[:10]
)
results[dataset_name] = {
'metrics': metrics,
'interpretability': interpretability_score,
'processing_time': self._measure_processing_time(model, dataset.X)
}
return BenchmarkResults(results)
```
## 🧪 Usage Examples
### Basic Anomaly Detection
```python
from src.ml.anomaly_detector import AnomalyDetector
from src.ml.data_pipeline import DataPipeline
# Initialize components
detector = AnomalyDetector()
pipeline = DataPipeline()
# Process contract data
contracts = fetch_contracts_from_api()
processed_data = pipeline.preprocess_contracts(contracts)
# Detect anomalies
anomalies = detector.detect_price_anomalies(
contracts,
threshold=2.5
)
for anomaly in anomalies:
print(f"Anomaly: {anomaly.description}")
print(f"Confidence: {anomaly.confidence:.2f}")
print(f"Affected contracts: {len(anomaly.affected_records)}")
```
### Advanced Pattern Analysis
```python
from src.ml.pattern_analyzer import PatternAnalyzer
from src.ml.spectral_analyzer import SpectralAnalyzer
# Initialize analyzers
pattern_analyzer = PatternAnalyzer()
spectral_analyzer = SpectralAnalyzer()
# Analyze spending trends
expenses = fetch_expenses_from_api(organization="20000", year=2024)
trend_analysis = pattern_analyzer.analyze_spending_trends(expenses)
print(f"Trend direction: {trend_analysis.trend_direction}")
print(f"Seasonality strength: {trend_analysis.seasonality_strength:.2f}")
print(f"Anomalous periods: {len(trend_analysis.anomalous_periods)}")
# Spectral analysis
spending_series = extract_monthly_spending(expenses)
spectral_analysis = spectral_analyzer.analyze_spending_spectrum(spending_series)
print(f"Dominant periods: {spectral_analysis.significant_periods}")
print(f"End-of-year effect: {spectral_analysis.eoy_strength:.2f}")
```
### Custom Model Training
```python
from src.ml.training_pipeline import ModelTrainingPipeline
from src.ml.cidadao_model import CidadaoAIModel
# Prepare training data
training_data = prepare_training_dataset()
# Initialize training pipeline
trainer = ModelTrainingPipeline()
# Train model with hyperparameter optimization
training_result = await trainer.train_anomaly_detection_model(
training_data,
hyperparameter_search=True,
cross_validation_folds=5
)
print(f"Best F1 score: {training_result.evaluation.f1_score:.3f}")
print(f"Model size: {training_result.model.count_params()} parameters")
# Deploy to HuggingFace
hf_integration = HuggingFaceIntegration()
model_url = hf_integration.upload_model_to_hub(
training_result.model,
"cidadao-ai/anomaly-detector-v1",
"Government contract anomaly detection model",
training_result.evaluation.metrics
)
print(f"Model deployed: {model_url}")
```
---
This ML pipeline provides **state-of-the-art anomaly detection** and **pattern analysis** capabilities specifically designed for Brazilian government transparency data, with **full interpretability** and **production-ready deployment** options. |