File size: 19,788 Bytes
796f99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327e4f9
44eae1d
796f99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44eae1d
 
 
796f99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44eae1d
 
796f99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
"""
A/B Testing Framework for ML Models

This module provides A/B testing capabilities for comparing model
performance in production environments.
"""

import asyncio
import json
import random
from datetime import datetime, timedelta
from typing import Dict, Any, List, Optional, Tuple, Union
from enum import Enum
import numpy as np
from scipy import stats

from src.core import get_logger
from src.core.cache import get_redis_client
from src.ml.training_pipeline import get_training_pipeline


logger = get_logger(__name__)


class ABTestStatus(Enum):
    """Status of an A/B test."""
    DRAFT = "draft"
    RUNNING = "running"
    PAUSED = "paused"
    COMPLETED = "completed"
    STOPPED = "stopped"


class TrafficAllocationStrategy(Enum):
    """Strategy for allocating traffic between models."""
    RANDOM = "random"
    WEIGHTED = "weighted"
    EPSILON_GREEDY = "epsilon_greedy"
    THOMPSON_SAMPLING = "thompson_sampling"


class ABTestFramework:
    """
    A/B Testing framework for ML models.
    
    Features:
    - Multiple allocation strategies
    - Statistical significance testing
    - Real-time performance tracking
    - Automatic winner selection
    - Gradual rollout support
    """
    
    def __init__(self):
        """Initialize the A/B testing framework."""
        self.active_tests = {}
        self.test_results = {}
    
    async def create_test(
        self,
        test_name: str,
        model_a: Tuple[str, Optional[int]],  # (model_id, version)
        model_b: Tuple[str, Optional[int]],
        allocation_strategy: TrafficAllocationStrategy = TrafficAllocationStrategy.RANDOM,
        traffic_split: Tuple[float, float] = (0.5, 0.5),
        success_metric: str = "f1_score",
        minimum_sample_size: int = 1000,
        significance_level: float = 0.05,
        auto_stop: bool = True,
        duration_hours: Optional[int] = None
    ) -> Dict[str, Any]:
        """
        Create a new A/B test.
        
        Args:
            test_name: Unique name for the test
            model_a: Model A (control) - (model_id, version)
            model_b: Model B (treatment) - (model_id, version)
            allocation_strategy: Traffic allocation strategy
            traffic_split: Traffic split between models (must sum to 1.0)
            success_metric: Metric to optimize
            minimum_sample_size: Minimum samples before analysis
            significance_level: Statistical significance threshold
            auto_stop: Automatically stop when winner found
            duration_hours: Maximum test duration
            
        Returns:
            Test configuration
        """
        if test_name in self.active_tests:
            raise ValueError(f"Test {test_name} already exists")
        
        if abs(sum(traffic_split) - 1.0) > 0.001:
            raise ValueError("Traffic split must sum to 1.0")
        
        # Load models to verify they exist
        pipeline = get_training_pipeline()
        await pipeline.load_model(*model_a)
        await pipeline.load_model(*model_b)
        
        test_config = {
            "test_id": f"ab_test_{test_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            "test_name": test_name,
            "model_a": {"model_id": model_a[0], "version": model_a[1]},
            "model_b": {"model_id": model_b[0], "version": model_b[1]},
            "allocation_strategy": allocation_strategy.value,
            "traffic_split": traffic_split,
            "success_metric": success_metric,
            "minimum_sample_size": minimum_sample_size,
            "significance_level": significance_level,
            "auto_stop": auto_stop,
            "status": ABTestStatus.DRAFT.value,
            "created_at": datetime.now().isoformat(),
            "start_time": None,
            "end_time": None,
            "duration_hours": duration_hours,
            "results": {
                "model_a": {"predictions": 0, "successes": 0, "metrics": {}},
                "model_b": {"predictions": 0, "successes": 0, "metrics": {}}
            }
        }
        
        # Initialize allocation strategy specific params
        if allocation_strategy == TrafficAllocationStrategy.EPSILON_GREEDY:
            test_config["epsilon"] = 0.1  # 10% exploration
        elif allocation_strategy == TrafficAllocationStrategy.THOMPSON_SAMPLING:
            test_config["thompson_params"] = {
                "model_a": {"alpha": 1, "beta": 1},
                "model_b": {"alpha": 1, "beta": 1}
            }
        
        self.active_tests[test_name] = test_config
        
        # Save to Redis
        await self._save_test_config(test_config)
        
        logger.info(f"Created A/B test: {test_name}")
        return test_config
    
    async def start_test(self, test_name: str) -> bool:
        """Start an A/B test."""
        if test_name not in self.active_tests:
            # Try to load from Redis
            test_config = await self._load_test_config(test_name)
            if not test_config:
                raise ValueError(f"Test {test_name} not found")
            self.active_tests[test_name] = test_config
        
        test_config = self.active_tests[test_name]
        
        if test_config["status"] not in [ABTestStatus.DRAFT.value, ABTestStatus.PAUSED.value]:
            raise ValueError(f"Cannot start test in status {test_config['status']}")
        
        test_config["status"] = ABTestStatus.RUNNING.value
        test_config["start_time"] = datetime.now().isoformat()
        
        await self._save_test_config(test_config)
        
        logger.info(f"Started A/B test: {test_name}")
        return True
    
    async def allocate_model(
        self,
        test_name: str,
        user_id: Optional[str] = None
    ) -> Tuple[str, int]:
        """
        Allocate a model for a user based on the test configuration.
        
        Args:
            test_name: Test name
            user_id: User identifier for consistent allocation
            
        Returns:
            Tuple of (model_id, version)
        """
        test_config = self.active_tests.get(test_name)
        if not test_config:
            test_config = await self._load_test_config(test_name)
            if not test_config:
                raise ValueError(f"Test {test_name} not found")
        
        if test_config["status"] != ABTestStatus.RUNNING.value:
            raise ValueError(f"Test {test_name} is not running")
        
        # Select model based on allocation strategy
        strategy = TrafficAllocationStrategy(test_config["allocation_strategy"])
        
        if strategy == TrafficAllocationStrategy.RANDOM:
            selected = await self._random_allocation(test_config, user_id)
        elif strategy == TrafficAllocationStrategy.WEIGHTED:
            selected = await self._weighted_allocation(test_config)
        elif strategy == TrafficAllocationStrategy.EPSILON_GREEDY:
            selected = await self._epsilon_greedy_allocation(test_config)
        elif strategy == TrafficAllocationStrategy.THOMPSON_SAMPLING:
            selected = await self._thompson_sampling_allocation(test_config)
        else:
            selected = "model_a"  # Default fallback
        
        # Return model info
        model_info = test_config[selected]
        return (model_info["model_id"], model_info["version"])
    
    async def _random_allocation(
        self,
        test_config: Dict[str, Any],
        user_id: Optional[str] = None
    ) -> str:
        """Random allocation with optional user-based consistency."""
        if user_id:
            # Hash user_id for consistent allocation
            hash_val = hash(user_id + test_config["test_id"]) % 100
            threshold = test_config["traffic_split"][0] * 100
            return "model_a" if hash_val < threshold else "model_b"
        else:
            # Pure random
            return "model_a" if random.random() < test_config["traffic_split"][0] else "model_b"
    
    async def _weighted_allocation(self, test_config: Dict[str, Any]) -> str:
        """Weighted allocation based on traffic split."""
        return np.random.choice(
            ["model_a", "model_b"],
            p=test_config["traffic_split"]
        )
    
    async def _epsilon_greedy_allocation(self, test_config: Dict[str, Any]) -> str:
        """Epsilon-greedy allocation (explore vs exploit)."""
        epsilon = test_config.get("epsilon", 0.1)
        
        if random.random() < epsilon:
            # Explore
            return random.choice(["model_a", "model_b"])
        else:
            # Exploit - choose best performing
            results = test_config["results"]
            rate_a = (results["model_a"]["successes"] / 
                     max(results["model_a"]["predictions"], 1))
            rate_b = (results["model_b"]["successes"] / 
                     max(results["model_b"]["predictions"], 1))
            
            return "model_a" if rate_a >= rate_b else "model_b"
    
    async def _thompson_sampling_allocation(self, test_config: Dict[str, Any]) -> str:
        """Thompson sampling allocation (Bayesian approach)."""
        params = test_config["thompson_params"]
        
        # Sample from Beta distributions
        sample_a = np.random.beta(params["model_a"]["alpha"], params["model_a"]["beta"])
        sample_b = np.random.beta(params["model_b"]["alpha"], params["model_b"]["beta"])
        
        return "model_a" if sample_a >= sample_b else "model_b"
    
    async def record_prediction(
        self,
        test_name: str,
        model_selection: str,  # "model_a" or "model_b"
        success: bool,
        prediction_metadata: Optional[Dict[str, Any]] = None
    ):
        """
        Record a prediction result for the test.
        
        Args:
            test_name: Test name
            model_selection: Which model was used
            success: Whether prediction was successful
            prediction_metadata: Additional metadata
        """
        test_config = self.active_tests.get(test_name)
        if not test_config:
            test_config = await self._load_test_config(test_name)
            if not test_config:
                raise ValueError(f"Test {test_name} not found")
        
        # Update results
        results = test_config["results"][model_selection]
        results["predictions"] += 1
        if success:
            results["successes"] += 1
        
        # Update Thompson sampling parameters if applicable
        if test_config["allocation_strategy"] == TrafficAllocationStrategy.THOMPSON_SAMPLING.value:
            params = test_config["thompson_params"][model_selection]
            if success:
                params["alpha"] += 1
            else:
                params["beta"] += 1
        
        # Save updated config
        await self._save_test_config(test_config)
        
        # Check if we should analyze results
        total_predictions = (test_config["results"]["model_a"]["predictions"] + 
                           test_config["results"]["model_b"]["predictions"])
        
        if total_predictions >= test_config["minimum_sample_size"]:
            analysis = await self.analyze_test(test_name)
            
            if test_config["auto_stop"] and analysis.get("winner"):
                await self.stop_test(test_name, reason="Winner found")
    
    async def analyze_test(self, test_name: str) -> Dict[str, Any]:
        """
        Analyze test results for statistical significance.
        
        Returns:
            Analysis results including winner if found
        """
        test_config = self.active_tests.get(test_name)
        if not test_config:
            test_config = await self._load_test_config(test_name)
            if not test_config:
                raise ValueError(f"Test {test_name} not found")
        
        results_a = test_config["results"]["model_a"]
        results_b = test_config["results"]["model_b"]
        
        # Calculate conversion rates
        rate_a = results_a["successes"] / max(results_a["predictions"], 1)
        rate_b = results_b["successes"] / max(results_b["predictions"], 1)
        
        # Perform chi-square test
        contingency_table = np.array([
            [results_a["successes"], results_a["predictions"] - results_a["successes"]],
            [results_b["successes"], results_b["predictions"] - results_b["successes"]]
        ])
        
        chi2, p_value, dof, expected = stats.chi2_contingency(contingency_table)
        
        # Calculate confidence intervals
        ci_a = self._calculate_confidence_interval(
            results_a["successes"], results_a["predictions"]
        )
        ci_b = self._calculate_confidence_interval(
            results_b["successes"], results_b["predictions"]
        )
        
        # Determine winner
        winner = None
        if p_value < test_config["significance_level"]:
            winner = "model_a" if rate_a > rate_b else "model_b"
        
        # Calculate lift
        lift = ((rate_b - rate_a) / rate_a * 100) if rate_a > 0 else 0
        
        analysis = {
            "model_a": {
                "conversion_rate": rate_a,
                "confidence_interval": ci_a,
                "sample_size": results_a["predictions"]
            },
            "model_b": {
                "conversion_rate": rate_b,
                "confidence_interval": ci_b,
                "sample_size": results_b["predictions"]
            },
            "p_value": p_value,
            "chi_square": chi2,
            "significant": p_value < test_config["significance_level"],
            "winner": winner,
            "lift": lift,
            "analysis_time": datetime.now().isoformat()
        }
        
        # Update test config with latest analysis
        test_config["latest_analysis"] = analysis
        await self._save_test_config(test_config)
        
        return analysis
    
    def _calculate_confidence_interval(
        self,
        successes: int,
        total: int,
        confidence_level: float = 0.95
    ) -> Tuple[float, float]:
        """Calculate confidence interval for conversion rate."""
        if total == 0:
            return (0.0, 0.0)
        
        rate = successes / total
        z = stats.norm.ppf((1 + confidence_level) / 2)
        
        # Wilson score interval
        denominator = 1 + z**2 / total
        center = (rate + z**2 / (2 * total)) / denominator
        margin = z * np.sqrt(rate * (1 - rate) / total + z**2 / (4 * total**2)) / denominator
        
        return (max(0, center - margin), min(1, center + margin))
    
    async def stop_test(self, test_name: str, reason: str = "Manual stop") -> bool:
        """Stop an A/B test."""
        test_config = self.active_tests.get(test_name)
        if not test_config:
            test_config = await self._load_test_config(test_name)
            if not test_config:
                raise ValueError(f"Test {test_name} not found")
        
        test_config["status"] = ABTestStatus.STOPPED.value
        test_config["end_time"] = datetime.now().isoformat()
        test_config["stop_reason"] = reason
        
        # Perform final analysis
        final_analysis = await self.analyze_test(test_name)
        test_config["final_analysis"] = final_analysis
        
        await self._save_test_config(test_config)
        
        # Move to completed tests
        self.test_results[test_name] = test_config
        if test_name in self.active_tests:
            del self.active_tests[test_name]
        
        logger.info(f"Stopped A/B test {test_name}: {reason}")
        return True
    
    async def get_test_status(self, test_name: str) -> Dict[str, Any]:
        """Get current status of a test."""
        test_config = self.active_tests.get(test_name)
        if not test_config:
            test_config = await self._load_test_config(test_name)
            if not test_config:
                raise ValueError(f"Test {test_name} not found")
        
        # Add runtime if running
        if test_config["status"] == ABTestStatus.RUNNING.value and test_config["start_time"]:
            start = datetime.fromisoformat(test_config["start_time"])
            runtime = (datetime.now() - start).total_seconds() / 3600
            test_config["runtime_hours"] = runtime
            
            # Check if should auto-stop due to duration
            if test_config.get("duration_hours") and runtime >= test_config["duration_hours"]:
                await self.stop_test(test_name, reason="Duration limit reached")
        
        return test_config
    
    async def promote_winner(self, test_name: str) -> bool:
        """Promote the winning model to production."""
        test_config = self.test_results.get(test_name)
        if not test_config:
            # Try loading completed test
            test_config = await self._load_test_config(test_name)
            if not test_config or test_config["status"] != ABTestStatus.STOPPED.value:
                raise ValueError(f"Test {test_name} not completed")
        
        final_analysis = test_config.get("final_analysis", {})
        winner = final_analysis.get("winner")
        
        if not winner:
            raise ValueError(f"No winner found for test {test_name}")
        
        # Promote winning model
        model_info = test_config[winner]
        pipeline = get_training_pipeline()
        success = await pipeline.promote_model(
            model_info["model_id"],
            model_info["version"],
            "production"
        )
        
        if success:
            logger.info(f"Promoted {winner} from test {test_name} to production")
        
        return success
    
    async def _save_test_config(self, test_config: Dict[str, Any]):
        """Save test configuration to Redis."""
        redis_client = await get_redis_client()
        key = f"ab_test:{test_config['test_name']}"
        await redis_client.set(
            key,
            json.dumps(test_config),
            ex=86400 * 90  # 90 days
        )
    
    async def _load_test_config(self, test_name: str) -> Optional[Dict[str, Any]]:
        """Load test configuration from Redis."""
        redis_client = await get_redis_client()
        key = f"ab_test:{test_name}"
        data = await redis_client.get(key)
        return json.loads(data) if data else None
    
    async def list_active_tests(self) -> List[Dict[str, Any]]:
        """List all active tests."""
        # Load from Redis pattern
        redis_client = await get_redis_client()
        keys = await redis_client.keys("ab_test:*")
        
        active_tests = []
        for key in keys:
            data = await redis_client.get(key)
            if data:
                test_config = json.loads(data)
                if test_config["status"] in [ABTestStatus.RUNNING.value, ABTestStatus.PAUSED.value]:
                    active_tests.append({
                        "test_name": test_config["test_name"],
                        "status": test_config["status"],
                        "model_a": test_config["model_a"]["model_id"],
                        "model_b": test_config["model_b"]["model_id"],
                        "start_time": test_config.get("start_time"),
                        "predictions": (test_config["results"]["model_a"]["predictions"] +
                                      test_config["results"]["model_b"]["predictions"])
                    })
        
        return active_tests


# Global A/B testing framework instance
ab_testing = ABTestFramework()


async def get_ab_testing() -> ABTestFramework:
    """Get the global A/B testing framework instance."""
    return ab_testing